Data & Storage Tools

Data & Storage Tools

Master All Your Data: From Files to Databases to Documents

AIMatrix Data & Storage Tools provide comprehensive automation for managing all types of data storage systems - from local filesystems and cloud storage to complex databases and document management systems. Our AI agents can automatically organize, process, backup, and optimize your data across any platform.

Tool Categories

💾 File Systems

Local and network file system management

  • Local Storage: Windows, macOS, Linux filesystems
  • Network Storage: NFS, SMB, FTP, SFTP
  • Distributed Storage: HDFS, GlusterFS, Ceph
  • IPFS Integration: Decentralized storage networks

☁️ Cloud Storage

Multi-cloud storage management and optimization

  • Amazon S3: Object storage and lifecycle management
  • Google Cloud Storage: Multi-region storage optimization
  • Azure Blob Storage: Tiered storage strategies
  • Multi-Cloud Sync: Cross-platform data replication

🗄️ Databases

Complete database management and optimization

  • Relational: PostgreSQL, MySQL, SQL Server, Oracle
  • NoSQL: MongoDB, Cassandra, DynamoDB, Redis
  • Graph: Neo4j, Amazon Neptune, ArangoDB
  • Vector: Pinecone, Weaviate, Chroma, Qdrant

📄 Document Management

Intelligent document processing and organization

  • Cloud Drives: Google Drive, OneDrive, Dropbox
  • Document Processing: OCR, text extraction, categorization
  • Version Control: Document versioning and collaboration
  • Search & Discovery: AI-powered content discovery

Key Features

🤖 AI-Powered Data Intelligence

  • Smart Organization: Automatically categorize and organize files and documents
  • Content Understanding: Extract meaning and metadata from any file type
  • Data Quality: Identify and fix data quality issues automatically
  • Predictive Analytics: Forecast storage needs and performance bottlenecks

🔒 Security & Compliance

  • Encryption at Rest: All data encrypted with enterprise-grade encryption
  • Access Controls: Fine-grained permissions and audit logging
  • Data Governance: Automated compliance with GDPR, HIPAA, SOX
  • Backup & Recovery: Automated backup strategies and disaster recovery

⚡ Performance Optimization

  • Intelligent Caching: Multi-tier caching for optimal performance
  • Auto-Scaling: Dynamic scaling based on usage patterns
  • Query Optimization: AI-powered database query optimization
  • Storage Tiering: Automatic data lifecycle management

File System Management

Universal File System Integration

Connect to any file system with intelligent automation:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from aimatrix.tools.storage import FileSystemTool

# Initialize file system management
filesystem = FileSystemTool(
    local_systems=["windows", "macos", "linux"],
    network_protocols=["nfs", "smb", "ftp", "sftp"],
    cloud_filesystems=["s3fs", "gcsfuse", "azure_files"],
    ai_organization=True
)

# AI-powered file organization
file_agent = AIAgent(
    name="file-organization-agent",
    tools=[filesystem],
    instructions="""
    You are a file organization expert. You can:
    1. Organize files intelligently based on content and metadata
    2. Detect and remove duplicate files
    3. Optimize storage usage and performance
    4. Backup and sync files across systems
    5. Extract and index content for search
    """
)

# Example: Intelligent file organization
@file_agent.task("organize_files")
async def organize_files_intelligently(directory_path: str, organization_rules: dict):
    """Organize files based on AI analysis and custom rules"""
    
    # Scan directory and analyze all files
    file_analysis = await filesystem.analyze_directory(
        path=directory_path,
        recursive=True,
        include_metadata=True,
        content_analysis=True
    )
    
    # AI-powered file categorization
    categorized_files = await filesystem.categorize_files(
        files=file_analysis.files,
        categories=organization_rules.get("categories", [
            "documents", "images", "videos", "audio", "archives", "code", "data"
        ]),
        custom_rules=organization_rules.get("custom_rules", {})
    )
    
    # Create organized directory structure
    organization_plan = await filesystem.create_organization_plan(
        categorized_files=categorized_files,
        base_path=directory_path,
        structure_template=organization_rules.get("structure", "{category}/{year}/{month}")
    )
    
    # Execute organization with safety checks
    organization_results = []
    
    for file_operation in organization_plan.operations:
        # Create backup before moving important files
        if file_operation.file_size > 100 * 1024 * 1024:  # Files > 100MB
            backup_result = await filesystem.create_backup(
                file_path=file_operation.source_path,
                backup_location=organization_rules.get("backup_location", "./backups")
            )
        
        # Execute file operation
        try:
            operation_result = await filesystem.execute_operation(file_operation)
            organization_results.append({
                "file": file_operation.source_path,
                "destination": file_operation.destination_path,
                "operation": file_operation.operation_type,
                "status": "success",
                "size_saved": file_operation.size_optimization if hasattr(file_operation, 'size_optimization') else 0
            })
        except Exception as e:
            logger.error(f"Failed to organize {file_operation.source_path}: {str(e)}")
            organization_results.append({
                "file": file_operation.source_path,
                "operation": file_operation.operation_type,
                "status": "failed",
                "error": str(e)
            })
    
    # Update file index for search
    await filesystem.update_file_index(
        directory=directory_path,
        include_content=True,
        extract_metadata=True
    )
    
    # Generate organization summary
    summary = {
        "total_files_processed": len(organization_results),
        "successfully_organized": len([r for r in organization_results if r["status"] == "success"]),
        "total_size_optimized": sum(r.get("size_saved", 0) for r in organization_results),
        "categories_created": len(set(categorized_files.keys())),
        "organization_results": organization_results
    }
    
    return summary

# Duplicate file detection and management
async def manage_duplicate_files(scan_paths: list, action: str = "report"):
    """Find and manage duplicate files across multiple locations"""
    
    # Deep scan for duplicates using multiple algorithms
    duplicate_analysis = await filesystem.find_duplicates(
        paths=scan_paths,
        algorithms=["md5", "sha256", "content_similarity", "metadata_comparison"],
        minimum_size=1024,  # Ignore files smaller than 1KB
        include_similar_files=True  # Find similar but not identical files
    )
    
    duplicate_groups = []
    
    for duplicate_group in duplicate_analysis.duplicate_groups:
        # Analyze each group to determine the best file to keep
        best_file = await filesystem.select_best_duplicate(
            files=duplicate_group.files,
            criteria=[
                "highest_quality",
                "most_recent",
                "best_location",
                "most_metadata"
            ]
        )
        
        group_info = {
            "group_id": duplicate_group.id,
            "file_count": len(duplicate_group.files),
            "total_size": sum(f.size for f in duplicate_group.files),
            "potential_savings": sum(f.size for f in duplicate_group.files if f.path != best_file.path),
            "best_file": best_file.path,
            "duplicates": [f.path for f in duplicate_group.files if f.path != best_file.path],
            "similarity_score": duplicate_group.similarity_score
        }
        
        duplicate_groups.append(group_info)
    
    # Execute actions based on specified action
    if action == "remove_duplicates":
        removal_results = []
        
        for group in duplicate_groups:
            # Create safety backup of duplicates before removal
            for duplicate_path in group["duplicates"]:
                backup_path = await filesystem.create_safety_backup(duplicate_path)
                
                try:
                    await filesystem.remove_file(duplicate_path)
                    removal_results.append({
                        "file": duplicate_path,
                        "status": "removed",
                        "backup_location": backup_path,
                        "size_saved": await filesystem.get_file_size(duplicate_path)
                    })
                except Exception as e:
                    removal_results.append({
                        "file": duplicate_path,
                        "status": "failed",
                        "error": str(e)
                    })
        
        return {
            "duplicate_groups": duplicate_groups,
            "removal_results": removal_results,
            "total_space_saved": sum(r.get("size_saved", 0) for r in removal_results)
        }
    
    elif action == "create_hardlinks":
        # Create hardlinks to save space while preserving file structure
        hardlink_results = []
        
        for group in duplicate_groups:
            best_file_path = group["best_file"]
            
            for duplicate_path in group["duplicates"]:
                try:
                    # Create hardlink
                    await filesystem.create_hardlink(
                        source=best_file_path,
                        target=duplicate_path
                    )
                    
                    hardlink_results.append({
                        "original": duplicate_path,
                        "linked_to": best_file_path,
                        "status": "linked",
                        "space_saved": group["potential_savings"] / len(group["duplicates"])
                    })
                except Exception as e:
                    hardlink_results.append({
                        "original": duplicate_path,
                        "status": "failed",
                        "error": str(e)
                    })
        
        return {
            "duplicate_groups": duplicate_groups,
            "hardlink_results": hardlink_results,
            "total_space_saved": sum(r.get("space_saved", 0) for r in hardlink_results)
        }
    
    else:  # action == "report"
        return {
            "duplicate_groups": duplicate_groups,
            "total_duplicates": sum(g["file_count"] - 1 for g in duplicate_groups),
            "total_potential_savings": sum(g["potential_savings"] for g in duplicate_groups)
        }

# Network file system management
async def setup_network_file_access(network_config: dict):
    """Set up secure access to network file systems"""
    
    network_connections = []
    
    for connection_config in network_config["connections"]:
        if connection_config["protocol"] == "nfs":
            # Mount NFS share
            nfs_mount = await filesystem.mount_nfs(
                server=connection_config["server"],
                export_path=connection_config["export_path"],
                mount_point=connection_config["local_mount_point"],
                options=connection_config.get("mount_options", ["rw", "hard", "intr"]),
                version=connection_config.get("nfs_version", "4.1")
            )
            
            network_connections.append({
                "type": "nfs",
                "server": connection_config["server"],
                "mount_point": nfs_mount.mount_point,
                "status": nfs_mount.status
            })
        
        elif connection_config["protocol"] == "smb":
            # Mount SMB/CIFS share
            smb_mount = await filesystem.mount_smb(
                server=connection_config["server"],
                share_name=connection_config["share_name"],
                mount_point=connection_config["local_mount_point"],
                username=connection_config["username"],
                password=connection_config["password"],
                domain=connection_config.get("domain"),
                version=connection_config.get("smb_version", "3.0")
            )
            
            network_connections.append({
                "type": "smb",
                "server": connection_config["server"],
                "share": connection_config["share_name"],
                "mount_point": smb_mount.mount_point,
                "status": smb_mount.status
            })
        
        elif connection_config["protocol"] == "sftp":
            # Set up SFTP connection
            sftp_connection = await filesystem.create_sftp_connection(
                host=connection_config["host"],
                port=connection_config.get("port", 22),
                username=connection_config["username"],
                private_key_path=connection_config.get("private_key_path"),
                password=connection_config.get("password")
            )
            
            network_connections.append({
                "type": "sftp",
                "host": connection_config["host"],
                "connection_id": sftp_connection.id,
                "status": sftp_connection.status
            })
    
    # Set up automated synchronization
    if network_config.get("sync_rules"):
        sync_jobs = []
        
        for sync_rule in network_config["sync_rules"]:
            sync_job = await filesystem.create_sync_job(
                source=sync_rule["source"],
                destination=sync_rule["destination"],
                schedule=sync_rule.get("schedule", "hourly"),
                sync_type=sync_rule.get("type", "bidirectional"),  # or "push", "pull"
                conflict_resolution=sync_rule.get("conflict_resolution", "newest_wins"),
                exclude_patterns=sync_rule.get("exclude_patterns", [])
            )
            
            sync_jobs.append(sync_job)
    
    return {
        "network_connections": network_connections,
        "sync_jobs": sync_jobs if network_config.get("sync_rules") else [],
        "total_mounted_systems": len(network_connections)
    }

IPFS Integration

Decentralized storage with IPFS:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
from aimatrix.tools.storage import IPFSTool

# Initialize IPFS integration
ipfs = IPFSTool(
    node_type="full",  # or "light"
    gateway_enabled=True,
    pinning_service="pinata",  # or "web3.storage", "infura"
    content_addressing=True
)

# Decentralized file storage and retrieval
async def store_files_on_ipfs(files: list, metadata: dict = None):
    """Store files on IPFS with intelligent pinning strategy"""
    
    stored_files = []
    
    for file_path in files:
        # Analyze file for optimal storage strategy
        file_analysis = await ipfs.analyze_file(file_path)
        
        # Add file to IPFS
        ipfs_result = await ipfs.add_file(
            file_path=file_path,
            pin=True,
            wrap_with_directory=file_analysis.should_wrap,
            chunk_size=file_analysis.optimal_chunk_size
        )
        
        # Store metadata
        if metadata:
            metadata_hash = await ipfs.add_json({
                "file_hash": ipfs_result.hash,
                "original_name": os.path.basename(file_path),
                "file_size": file_analysis.size,
                "mime_type": file_analysis.mime_type,
                "upload_time": datetime.utcnow().isoformat(),
                **metadata
            })
        
        # Pin to multiple services for redundancy
        pinning_results = await ipfs.pin_to_services(
            hash=ipfs_result.hash,
            services=["pinata", "web3.storage", "infura"],
            metadata={"name": os.path.basename(file_path)}
        )
        
        stored_files.append({
            "original_path": file_path,
            "ipfs_hash": ipfs_result.hash,
            "metadata_hash": metadata_hash if metadata else None,
            "pinning_services": [p.service for p in pinning_results if p.success],
            "gateway_url": f"https://gateway.ipfs.io/ipfs/{ipfs_result.hash}",
            "size": file_analysis.size
        })
    
    return {
        "stored_files": stored_files,
        "total_files": len(stored_files),
        "total_size": sum(f["size"] for f in stored_files)
    }

# IPFS content discovery and retrieval
async def create_ipfs_content_index(directory_hash: str):
    """Create searchable index of IPFS content"""
    
    # Recursively explore IPFS directory
    content_tree = await ipfs.explore_directory(directory_hash, recursive=True)
    
    # Extract and index content
    indexed_content = []
    
    for item in content_tree.items:
        if item.type == "file":
            # Download and analyze content
            content = await ipfs.cat(item.hash, max_size=10*1024*1024)  # 10MB limit
            
            # Extract text content for indexing
            if item.mime_type.startswith("text/") or item.mime_type == "application/pdf":
                text_content = await extract_text_content(content, item.mime_type)
                
                # Create search index entry
                index_entry = {
                    "hash": item.hash,
                    "name": item.name,
                    "size": item.size,
                    "mime_type": item.mime_type,
                    "content_preview": text_content[:500],  # First 500 characters
                    "keywords": await extract_keywords(text_content),
                    "indexed_at": datetime.utcnow().isoformat()
                }
                
                indexed_content.append(index_entry)
    
    # Store index on IPFS
    index_hash = await ipfs.add_json({
        "directory_hash": directory_hash,
        "indexed_files": indexed_content,
        "total_files": len(indexed_content),
        "index_created": datetime.utcnow().isoformat()
    })
    
    return {
        "index_hash": index_hash,
        "indexed_files": len(indexed_content),
        "directory_hash": directory_hash
    }

Cloud Storage Management

Multi-Cloud Storage Orchestration

Unified management across all cloud storage platforms:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
from aimatrix.tools.storage import CloudStorageTool

# Initialize multi-cloud storage
cloud_storage = CloudStorageTool(
    providers={
        "aws_s3": {"regions": ["us-east-1", "eu-west-1", "ap-southeast-1"]},
        "gcp_storage": {"regions": ["us-central1", "europe-west1", "asia-southeast1"]},
        "azure_blob": {"regions": ["eastus", "westeurope", "southeastasia"]},
        "dropbox": {"business_account": True},
        "box": {"enterprise_account": True}
    },
    intelligent_tiering=True,
    cross_provider_sync=True
)

# Intelligent storage optimization
async def optimize_cloud_storage():
    """Optimize storage across all cloud providers"""
    
    # Analyze storage usage across all providers
    storage_analysis = await cloud_storage.analyze_usage(
        include_costs=True,
        include_access_patterns=True,
        timeframe="last_90_days"
    )
    
    optimization_actions = []
    
    # Analyze each storage location
    for provider, buckets in storage_analysis.providers.items():
        for bucket in buckets:
            # Identify optimization opportunities
            bucket_optimization = await cloud_storage.analyze_bucket_optimization(
                provider=provider,
                bucket_name=bucket.name,
                optimization_goals=["cost", "performance", "compliance"]
            )
            
            # Storage class/tier optimization
            if bucket_optimization.tier_optimization:
                for file_group in bucket_optimization.tier_optimization.file_groups:
                    if file_group.potential_savings > 100:  # $100 minimum savings
                        # Implement tier transition
                        tier_result = await cloud_storage.transition_storage_tier(
                            provider=provider,
                            bucket_name=bucket.name,
                            objects=file_group.objects,
                            target_tier=file_group.recommended_tier
                        )
                        
                        optimization_actions.append({
                            "provider": provider,
                            "bucket": bucket.name,
                            "action": "tier_transition",
                            "objects_moved": len(file_group.objects),
                            "target_tier": file_group.recommended_tier,
                            "monthly_savings": file_group.potential_savings
                        })
            
            # Lifecycle policy optimization
            if not bucket.has_lifecycle_policy or bucket_optimization.lifecycle_improvement:
                lifecycle_policy = await cloud_storage.generate_optimal_lifecycle_policy(
                    provider=provider,
                    bucket_name=bucket.name,
                    access_patterns=bucket.access_patterns,
                    compliance_requirements=bucket.compliance_requirements
                )
                
                await cloud_storage.apply_lifecycle_policy(
                    provider=provider,
                    bucket_name=bucket.name,
                    policy=lifecycle_policy
                )
                
                optimization_actions.append({
                    "provider": provider,
                    "bucket": bucket.name,
                    "action": "lifecycle_policy",
                    "policy_rules": len(lifecycle_policy.rules),
                    "estimated_annual_savings": lifecycle_policy.estimated_savings
                })
            
            # Compression and deduplication
            if bucket_optimization.compression_opportunity:
                compression_result = await cloud_storage.compress_objects(
                    provider=provider,
                    bucket_name=bucket.name,
                    objects=bucket_optimization.compression_opportunity.candidates,
                    compression_algorithm="gzip"
                )
                
                optimization_actions.append({
                    "provider": provider,
                    "bucket": bucket.name,
                    "action": "compression",
                    "objects_compressed": compression_result.objects_processed,
                    "space_saved": compression_result.space_saved
                })
    
    # Cross-provider optimization
    cross_provider_opportunities = await cloud_storage.analyze_cross_provider_optimization(
        storage_analysis=storage_analysis,
        consider_data_transfer_costs=True
    )
    
    for opportunity in cross_provider_opportunities:
        if opportunity.annual_savings > 1000:  # $1000 minimum savings
            # Execute cross-provider migration
            migration_result = await cloud_storage.migrate_data(
                source_provider=opportunity.source_provider,
                source_bucket=opportunity.source_bucket,
                target_provider=opportunity.target_provider,
                target_bucket=opportunity.target_bucket,
                objects=opportunity.objects,
                preserve_metadata=True,
                verify_integrity=True
            )
            
            optimization_actions.append({
                "action": "cross_provider_migration",
                "source": f"{opportunity.source_provider}/{opportunity.source_bucket}",
                "target": f"{opportunity.target_provider}/{opportunity.target_bucket}",
                "objects_migrated": migration_result.objects_migrated,
                "annual_savings": opportunity.annual_savings
            })
    
    return {
        "optimization_actions": optimization_actions,
        "total_annual_savings": sum(
            action.get("monthly_savings", action.get("annual_savings", 0)) * 
            (12 if "monthly_savings" in action else 1)
            for action in optimization_actions
        ),
        "storage_optimized": True
    }

# Automated backup and sync
async def setup_intelligent_backup_strategy(backup_config: dict):
    """Set up intelligent backup strategy across multiple providers"""
    
    # Analyze data for backup strategy
    data_analysis = await cloud_storage.analyze_data_for_backup(
        sources=backup_config["sources"],
        requirements={
            "rpo": backup_config.get("recovery_point_objective", 4),  # hours
            "rto": backup_config.get("recovery_time_objective", 2),   # hours
            "retention_years": backup_config.get("retention_years", 7),
            "compliance_requirements": backup_config.get("compliance", [])
        }
    )
    
    # Design optimal backup architecture
    backup_strategy = await cloud_storage.design_backup_strategy(
        data_analysis=data_analysis,
        budget_constraints=backup_config.get("budget_limit"),
        geographic_distribution=backup_config.get("geo_distribution", True)
    )
    
    implemented_backups = []
    
    for backup_tier in backup_strategy.backup_tiers:
        if backup_tier.tier == "primary":
            # Primary backup - fast recovery, higher cost
            primary_backup = await cloud_storage.setup_primary_backup(
                sources=backup_tier.sources,
                target_provider=backup_tier.recommended_provider,
                target_region=backup_tier.recommended_region,
                backup_frequency=backup_tier.frequency,
                encryption=True,
                versioning=True
            )
            
            implemented_backups.append({
                "tier": "primary",
                "provider": backup_tier.recommended_provider,
                "frequency": backup_tier.frequency,
                "sources": len(backup_tier.sources),
                "estimated_cost": primary_backup.monthly_cost
            })
        
        elif backup_tier.tier == "secondary":
            # Secondary backup - balanced cost/recovery
            secondary_backup = await cloud_storage.setup_secondary_backup(
                sources=backup_tier.sources,
                target_provider=backup_tier.recommended_provider,
                target_region=backup_tier.recommended_region,
                backup_frequency=backup_tier.frequency,
                storage_class=backup_tier.storage_class
            )
            
            implemented_backups.append({
                "tier": "secondary",
                "provider": backup_tier.recommended_provider,
                "frequency": backup_tier.frequency,
                "sources": len(backup_tier.sources),
                "estimated_cost": secondary_backup.monthly_cost
            })
        
        elif backup_tier.tier == "archive":
            # Archive backup - long-term retention, lowest cost
            archive_backup = await cloud_storage.setup_archive_backup(
                sources=backup_tier.sources,
                target_provider=backup_tier.recommended_provider,
                storage_class="glacier_deep_archive",
                retention_years=backup_config.get("retention_years", 7)
            )
            
            implemented_backups.append({
                "tier": "archive",
                "provider": backup_tier.recommended_provider,
                "retention": f"{backup_config.get('retention_years', 7)} years",
                "sources": len(backup_tier.sources),
                "estimated_cost": archive_backup.monthly_cost
            })
    
    # Set up monitoring and alerting
    backup_monitoring = await cloud_storage.setup_backup_monitoring(
        backup_jobs=[b["job_id"] for b in implemented_backups if "job_id" in b],
        alerts=[
            {"event": "backup_failed", "notification": "email"},
            {"event": "backup_delayed", "threshold_hours": 2},
            {"event": "storage_quota_exceeded", "threshold_percent": 90}
        ]
    )
    
    # Create disaster recovery plan
    dr_plan = await cloud_storage.create_disaster_recovery_plan(
        backup_strategy=backup_strategy,
        recovery_procedures=backup_config.get("recovery_procedures", {}),
        test_schedule=backup_config.get("dr_test_schedule", "quarterly")
    )
    
    return {
        "backup_tiers": implemented_backups,
        "total_monthly_cost": sum(b["estimated_cost"] for b in implemented_backups),
        "monitoring_enabled": True,
        "disaster_recovery_plan": dr_plan.id,
        "estimated_rpo": backup_strategy.achieved_rpo,
        "estimated_rto": backup_strategy.achieved_rto
    }

# Content delivery network optimization
async def optimize_cdn_strategy(content_config: dict):
    """Optimize content delivery across global CDN networks"""
    
    # Analyze content and user distribution
    content_analysis = await cloud_storage.analyze_content_for_cdn(
        content_sources=content_config["content_sources"],
        user_analytics=content_config.get("user_analytics"),
        performance_requirements=content_config.get("performance_sla", {"p95_latency": 200})
    )
    
    # Select optimal CDN providers
    cdn_recommendations = await cloud_storage.recommend_cdn_providers(
        content_analysis=content_analysis,
        budget_constraints=content_config.get("budget_limit"),
        geographic_requirements=content_config.get("geo_requirements", [])
    )
    
    deployed_cdns = []
    
    for cdn_config in cdn_recommendations.recommended_cdns:
        # Deploy CDN configuration
        cdn_deployment = await cloud_storage.deploy_cdn(
            provider=cdn_config.provider,
            origins=cdn_config.origins,
            cache_behaviors=cdn_config.cache_behaviors,
            geographic_distribution=cdn_config.edge_locations,
            ssl_config=content_config.get("ssl_config", {"enable": True}),
            compression=cdn_config.compression_settings
        )
        
        # Configure intelligent caching rules
        caching_rules = await cloud_storage.optimize_caching_rules(
            cdn_id=cdn_deployment.id,
            content_types=content_analysis.content_types,
            access_patterns=content_analysis.access_patterns
        )
        
        deployed_cdns.append({
            "provider": cdn_config.provider,
            "distribution_id": cdn_deployment.id,
            "domain_name": cdn_deployment.domain_name,
            "edge_locations": len(cdn_config.edge_locations),
            "caching_rules": len(caching_rules),
            "estimated_monthly_cost": cdn_deployment.estimated_cost
        })
    
    # Set up CDN performance monitoring
    performance_monitoring = await cloud_storage.setup_cdn_monitoring(
        cdns=deployed_cdns,
        metrics=["cache_hit_ratio", "origin_latency", "edge_latency", "error_rate"],
        alerts=[
            {"metric": "cache_hit_ratio", "threshold": 85, "operator": "less_than"},
            {"metric": "edge_latency_p95", "threshold": 200, "operator": "greater_than"},
            {"metric": "error_rate", "threshold": 0.01, "operator": "greater_than"}
        ]
    )
    
    return {
        "deployed_cdns": deployed_cdns,
        "total_edge_locations": sum(cdn["edge_locations"] for cdn in deployed_cdns),
        "estimated_monthly_cost": sum(cdn["estimated_monthly_cost"] for cdn in deployed_cdns),
        "performance_monitoring": True,
        "global_coverage": cdn_recommendations.geographic_coverage
    }

Database Management

Universal Database Integration

Comprehensive database management across all platforms:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from aimatrix.tools.storage import DatabaseTool

# Initialize database management
database = DatabaseTool(
    sql_databases=["postgresql", "mysql", "sql_server", "oracle"],
    nosql_databases=["mongodb", "cassandra", "dynamodb", "redis"],
    graph_databases=["neo4j", "amazon_neptune", "arangodb"],
    vector_databases=["pinecone", "weaviate", "chroma", "qdrant"],
    ai_optimization=True
)

# Intelligent database optimization
async def optimize_database_performance(db_config: dict):
    """Comprehensive database performance optimization"""
    
    # Connect to database and analyze performance
    db_connection = await database.connect(
        database_type=db_config["type"],
        connection_string=db_config["connection_string"],
        credentials=db_config["credentials"]
    )
    
    # Comprehensive performance analysis
    performance_analysis = await database.analyze_performance(
        connection=db_connection,
        analysis_duration=db_config.get("analysis_hours", 24),
        include_query_patterns=True,
        include_resource_usage=True,
        include_index_analysis=True
    )
    
    optimization_actions = []
    
    # Query optimization
    if performance_analysis.slow_queries:
        for slow_query in performance_analysis.slow_queries:
            # AI-powered query optimization
            optimized_query = await database.optimize_query(
                original_query=slow_query.query,
                schema=performance_analysis.schema,
                statistics=performance_analysis.table_statistics
            )
            
            if optimized_query.estimated_improvement > 50:  # 50% improvement minimum
                optimization_actions.append({
                    "type": "query_optimization",
                    "original_query_id": slow_query.id,
                    "optimized_query": optimized_query.sql,
                    "estimated_improvement": optimized_query.estimated_improvement,
                    "execution_time_before": slow_query.avg_execution_time,
                    "execution_time_after": optimized_query.estimated_execution_time
                })
    
    # Index optimization
    index_recommendations = await database.analyze_index_optimization(
        connection=db_connection,
        query_workload=performance_analysis.query_patterns,
        table_statistics=performance_analysis.table_statistics
    )
    
    for index_rec in index_recommendations:
        if index_rec.impact_score > 70:  # High impact indexes only
            if index_rec.action == "create":
                # Create new index
                create_result = await database.create_index(
                    connection=db_connection,
                    table_name=index_rec.table,
                    columns=index_rec.columns,
                    index_type=index_rec.index_type,
                    include_columns=index_rec.include_columns
                )
                
                optimization_actions.append({
                    "type": "index_creation",
                    "table": index_rec.table,
                    "columns": index_rec.columns,
                    "index_name": create_result.index_name,
                    "estimated_improvement": index_rec.performance_improvement
                })
            
            elif index_rec.action == "drop":
                # Remove unused index
                drop_result = await database.drop_index(
                    connection=db_connection,
                    index_name=index_rec.index_name,
                    safety_check=True
                )
                
                optimization_actions.append({
                    "type": "index_removal",
                    "index_name": index_rec.index_name,
                    "space_saved": index_rec.space_savings,
                    "maintenance_cost_reduction": index_rec.maintenance_savings
                })
    
    # Configuration optimization
    config_optimization = await database.optimize_configuration(
        connection=db_connection,
        workload_characteristics=performance_analysis.workload_profile,
        hardware_specs=db_config.get("hardware_specs"),
        performance_goals=db_config.get("performance_goals", ["throughput", "latency"])
    )
    
    for config_change in config_optimization.recommended_changes:
        if config_change.safety_level == "safe":
            # Apply safe configuration changes
            await database.apply_configuration_change(
                connection=db_connection,
                parameter=config_change.parameter,
                value=config_change.recommended_value,
                restart_required=config_change.restart_required
            )
            
            optimization_actions.append({
                "type": "configuration_change",
                "parameter": config_change.parameter,
                "old_value": config_change.current_value,
                "new_value": config_change.recommended_value,
                "expected_improvement": config_change.expected_improvement
            })
    
    # Resource scaling recommendations
    scaling_analysis = await database.analyze_scaling_needs(
        performance_metrics=performance_analysis.metrics,
        growth_projections=db_config.get("growth_projections"),
        cost_constraints=db_config.get("cost_constraints")
    )
    
    if scaling_analysis.scaling_needed:
        optimization_actions.append({
            "type": "scaling_recommendation",
            "current_resources": scaling_analysis.current_resources,
            "recommended_resources": scaling_analysis.recommended_resources,
            "scaling_type": scaling_analysis.scaling_type,  # "vertical", "horizontal", "storage"
            "estimated_cost_impact": scaling_analysis.cost_impact,
            "performance_improvement": scaling_analysis.performance_improvement
        })
    
    # Generate optimization report
    optimization_report = await database.generate_optimization_report(
        actions=optimization_actions,
        performance_baseline=performance_analysis.baseline_metrics,
        estimated_improvements=sum(action.get("estimated_improvement", 0) for action in optimization_actions)
    )
    
    return {
        "optimization_actions": optimization_actions,
        "total_actions_applied": len([a for a in optimization_actions if a.get("applied", True)]),
        "estimated_performance_improvement": optimization_report.total_improvement,
        "optimization_report": optimization_report.summary
    }

# Database migration and modernization
async def modernize_database_architecture(migration_config: dict):
    """Migrate and modernize database architecture"""
    
    # Analyze source database
    source_analysis = await database.analyze_database_for_migration(
        source_config=migration_config["source"],
        target_options=migration_config["target_options"],
        migration_goals=migration_config.get("goals", ["performance", "cost", "scalability"])
    )
    
    # Select optimal target architecture
    target_recommendation = await database.recommend_target_architecture(
        source_analysis=source_analysis,
        requirements=migration_config["requirements"],
        constraints=migration_config.get("constraints", {})
    )
    
    # Create migration plan
    migration_plan = await database.create_migration_plan(
        source_config=migration_config["source"],
        target_config=target_recommendation.recommended_config,
        migration_strategy=migration_config.get("strategy", "online"),  # or "offline"
        data_validation_level=migration_config.get("validation_level", "comprehensive")
    )
    
    migration_results = []
    
    # Execute migration phases
    for phase in migration_plan.phases:
        if phase.type == "schema_migration":
            # Migrate database schema
            schema_result = await database.migrate_schema(
                source_connection=migration_plan.source_connection,
                target_connection=migration_plan.target_connection,
                schema_mapping=phase.schema_mapping,
                validation_enabled=True
            )
            
            migration_results.append({
                "phase": "schema_migration",
                "status": schema_result.status,
                "tables_migrated": len(schema_result.migrated_tables),
                "indexes_created": len(schema_result.created_indexes),
                "constraints_applied": len(schema_result.applied_constraints)
            })
        
        elif phase.type == "data_migration":
            # Migrate data with validation
            data_result = await database.migrate_data(
                source_connection=migration_plan.source_connection,
                target_connection=migration_plan.target_connection,
                tables=phase.tables,
                batch_size=phase.batch_size,
                parallel_threads=phase.parallel_threads,
                validation_enabled=True,
                progress_callback=lambda progress: print(f"Migration progress: {progress}%")
            )
            
            migration_results.append({
                "phase": "data_migration",
                "status": data_result.status,
                "records_migrated": data_result.total_records,
                "data_size_migrated": data_result.total_size,
                "validation_errors": len(data_result.validation_errors)
            })
        
        elif phase.type == "application_cutover":
            # Application cutover with minimal downtime
            cutover_result = await database.execute_application_cutover(
                cutover_plan=phase.cutover_plan,
                rollback_plan=phase.rollback_plan,
                downtime_window=phase.max_downtime_minutes
            )
            
            migration_results.append({
                "phase": "application_cutover",
                "status": cutover_result.status,
                "actual_downtime": cutover_result.actual_downtime_minutes,
                "applications_migrated": len(cutover_result.migrated_applications)
            })
    
    # Post-migration optimization
    post_migration_optimization = await database.optimize_migrated_database(
        target_connection=migration_plan.target_connection,
        workload_characteristics=source_analysis.workload_profile,
        optimization_goals=migration_config.get("post_migration_goals", ["performance"])
    )
    
    # Validation and testing
    migration_validation = await database.validate_migration(
        source_connection=migration_plan.source_connection,
        target_connection=migration_plan.target_connection,
        validation_tests=["data_integrity", "performance_comparison", "functionality_test"]
    )
    
    return {
        "migration_phases": migration_results,
        "total_downtime": sum(r.get("actual_downtime", 0) for r in migration_results),
        "data_migrated": sum(r.get("records_migrated", 0) for r in migration_results),
        "migration_successful": all(r["status"] == "success" for r in migration_results),
        "post_optimization": post_migration_optimization.summary,
        "validation_results": migration_validation.summary,
        "target_architecture": target_recommendation.architecture_summary
    }

# Vector database for AI applications
async def setup_vector_database_for_ai(vector_config: dict):
    """Set up vector database for AI/ML applications"""
    
    # Analyze embedding requirements
    embedding_analysis = await database.analyze_embedding_requirements(
        data_sources=vector_config["data_sources"],
        use_cases=vector_config["use_cases"],
        expected_scale=vector_config.get("expected_scale", {"documents": 1000000, "queries_per_second": 100})
    )
    
    # Select optimal vector database
    vector_db_recommendation = await database.recommend_vector_database(
        requirements=embedding_analysis,
        budget_constraints=vector_config.get("budget_limit"),
        performance_requirements=vector_config.get("performance_sla")
    )
    
    # Deploy vector database
    vector_db = await database.deploy_vector_database(
        provider=vector_db_recommendation.recommended_provider,
        configuration=vector_db_recommendation.optimal_config,
        scaling_config={
            "min_replicas": vector_config.get("min_replicas", 1),
            "max_replicas": vector_config.get("max_replicas", 5),
            "auto_scaling": True
        }
    )
    
    # Set up embedding pipeline
    embedding_pipeline = await database.create_embedding_pipeline(
        vector_db=vector_db,
        data_sources=vector_config["data_sources"],
        embedding_model=vector_config.get("embedding_model", "sentence-transformers/all-MiniLM-L6-v2"),
        chunk_strategy=vector_config.get("chunk_strategy", {"size": 512, "overlap": 50}),
        batch_size=vector_config.get("batch_size", 100)
    )
    
    # Process and index data
    indexing_results = []
    
    for data_source in vector_config["data_sources"]:
        indexing_result = await database.index_data_source(
            vector_db=vector_db,
            data_source=data_source,
            embedding_pipeline=embedding_pipeline,
            metadata_extraction=True,
            progress_callback=lambda progress: print(f"Indexing {data_source['name']}: {progress}%")
        )
        
        indexing_results.append({
            "data_source": data_source["name"],
            "documents_indexed": indexing_result.documents_processed,
            "vectors_created": indexing_result.vectors_created,
            "index_size": indexing_result.index_size,
            "indexing_time": indexing_result.processing_time
        })
    
    # Set up search and retrieval API
    search_api = await database.create_vector_search_api(
        vector_db=vector_db,
        search_features=[
            "semantic_search",
            "hybrid_search",  # Combines vector and keyword search
            "filtered_search",
            "multi_modal_search"
        ],
        rate_limiting=vector_config.get("rate_limits", {"requests_per_minute": 1000})
    )
    
    # Configure monitoring and alerts
    monitoring = await database.setup_vector_db_monitoring(
        vector_db=vector_db,
        metrics=["query_latency", "index_size", "memory_usage", "search_accuracy"],
        alerts=[
            {"metric": "query_latency_p95", "threshold": 100, "unit": "ms"},
            {"metric": "search_accuracy", "threshold": 0.85, "operator": "less_than"},
            {"metric": "memory_usage", "threshold": 80, "unit": "percent"}
        ]
    )
    
    return {
        "vector_database": {
            "provider": vector_db.provider,
            "instance_id": vector_db.id,
            "endpoint": vector_db.endpoint
        },
        "indexing_results": indexing_results,
        "total_vectors": sum(r["vectors_created"] for r in indexing_results),
        "search_api": {
            "endpoint": search_api.endpoint,
            "features": search_api.available_features
        },
        "monitoring_enabled": True,
        "estimated_monthly_cost": vector_db.estimated_monthly_cost
    }

Document Management

Intelligent Document Processing

AI-powered document management and processing:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
from aimatrix.tools.storage import DocumentManagementTool

# Initialize document management
document_manager = DocumentManagementTool(
    cloud_drives=["google_drive", "onedrive", "dropbox", "box"],
    ocr_enabled=True,
    ai_categorization=True,
    version_control=True,
    collaboration_features=True
)

# Intelligent document organization
async def organize_documents_intelligently(organization_config: dict):
    """Organize documents across all platforms using AI"""
    
    # Scan and analyze documents from all sources
    document_analysis = await document_manager.analyze_documents(
        sources=organization_config["sources"],
        include_content_analysis=True,
        include_metadata_extraction=True,
        ocr_enabled=True
    )
    
    # AI-powered document categorization
    categorization_results = await document_manager.categorize_documents(
        documents=document_analysis.documents,
        categories=organization_config.get("categories", [
            "contracts", "invoices", "reports", "presentations", 
            "spreadsheets", "images", "legal", "hr", "marketing"
        ]),
        confidence_threshold=organization_config.get("confidence_threshold", 0.8),
        custom_rules=organization_config.get("custom_rules", {})
    )
    
    # Extract key information from documents
    information_extraction = await document_manager.extract_document_information(
        documents=document_analysis.documents,
        extraction_targets=[
            "dates", "amounts", "names", "companies", "addresses", 
            "emails", "phone_numbers", "contract_terms", "signatures"
        ]
    )
    
    # Create organized folder structure
    organization_plan = await document_manager.create_organization_plan(
        categorized_documents=categorization_results,
        extracted_information=information_extraction,
        organization_template=organization_config.get("folder_structure", {
            "root": "{source}",
            "level1": "{category}",
            "level2": "{year}",
            "level3": "{month}"
        })
    )
    
    organized_documents = []
    
    # Execute organization plan
    for organization_action in organization_plan.actions:
        try:
            # Move/organize document
            result = await document_manager.execute_organization_action(
                action=organization_action,
                create_folders=True,
                maintain_versions=True,
                update_metadata=True
            )
            
            organized_documents.append({
                "document": organization_action.document_name,
                "source_path": organization_action.source_path,
                "target_path": organization_action.target_path,
                "category": organization_action.category,
                "confidence": organization_action.confidence,
                "status": "organized"
            })
            
        except Exception as e:
            organized_documents.append({
                "document": organization_action.document_name,
                "source_path": organization_action.source_path,
                "status": "failed",
                "error": str(e)
            })
    
    # Create searchable index
    search_index = await document_manager.create_search_index(
        organized_documents=organized_documents,
        include_full_text=True,
        include_metadata=True,
        include_extracted_entities=True
    )
    
    # Set up automated workflows
    if organization_config.get("automated_workflows"):
        workflows = await document_manager.setup_automated_workflows(
            workflows=organization_config["automated_workflows"],
            organized_structure=organization_plan.folder_structure
        )
    
    return {
        "organized_documents": organized_documents,
        "total_documents": len(organized_documents),
        "successfully_organized": len([d for d in organized_documents if d["status"] == "organized"]),
        "categories_created": len(set(d.get("category") for d in organized_documents if d.get("category"))),
        "search_index": search_index.id,
        "automated_workflows": workflows if organization_config.get("automated_workflows") else []
    }

# Advanced document search and discovery
async def create_intelligent_document_search(search_config: dict):
    """Create AI-powered document search and discovery system"""
    
    # Index documents with advanced AI features
    indexing_result = await document_manager.create_advanced_index(
        document_sources=search_config["sources"],
        indexing_features=[
            "full_text_search",
            "semantic_search",
            "entity_recognition",
            "topic_modeling",
            "sentiment_analysis",
            "language_detection"
        ],
        embedding_model=search_config.get("embedding_model", "sentence-transformers/all-MiniLM-L6-v2")
    )
    
    # Set up multi-modal search capabilities
    search_capabilities = await document_manager.setup_search_capabilities(
        index_id=indexing_result.index_id,
        capabilities=[
            "text_search",
            "semantic_search", 
            "image_search",
            "hybrid_search",
            "faceted_search",
            "natural_language_queries"
        ]
    )
    
    # Create search API
    search_api = await document_manager.create_search_api(
        index_id=indexing_result.index_id,
        capabilities=search_capabilities,
        rate_limiting=search_config.get("rate_limits", {"requests_per_minute": 500}),
        authentication=search_config.get("authentication", {"required": True})
    )
    
    # Implement auto-complete and suggestions
    auto_complete = await document_manager.setup_auto_complete(
        index_id=indexing_result.index_id,
        suggestion_types=["query_completion", "spelling_correction", "related_searches"],
        learning_enabled=True
    )
    
    # Set up search analytics
    analytics = await document_manager.setup_search_analytics(
        api_id=search_api.id,
        metrics=[
            "search_queries",
            "click_through_rates",
            "search_success_rates",
            "popular_documents",
            "user_behavior_patterns"
        ]
    )
    
    return {
        "search_index": {
            "id": indexing_result.index_id,
            "documents_indexed": indexing_result.documents_count,
            "index_size": indexing_result.index_size
        },
        "search_api": {
            "endpoint": search_api.endpoint,
            "capabilities": search_capabilities,
            "documentation_url": search_api.docs_url
        },
        "features": {
            "auto_complete": True,
            "analytics": True,
            "multi_modal": True,
            "semantic_search": True
        }
    }

# Document collaboration and workflow
async def setup_document_collaboration(collaboration_config: dict):
    """Set up intelligent document collaboration and workflow"""
    
    # Create collaborative workspaces
    workspaces = []
    
    for workspace_config in collaboration_config["workspaces"]:
        workspace = await document_manager.create_workspace(
            name=workspace_config["name"],
            members=workspace_config["members"],
            permissions=workspace_config.get("permissions", {}),
            templates=workspace_config.get("document_templates", []),
            approval_workflows=workspace_config.get("approval_workflows", [])
        )
        
        # Set up version control
        version_control = await document_manager.setup_version_control(
            workspace_id=workspace.id,
            versioning_strategy=workspace_config.get("versioning", "automatic"),
            retention_policy=workspace_config.get("retention", {"keep_versions": 10}),
            merge_conflict_resolution=workspace_config.get("conflict_resolution", "manual")
        )
        
        # Configure collaboration features
        collaboration_features = await document_manager.configure_collaboration(
            workspace_id=workspace.id,
            features=[
                "real_time_editing",
                "comments_and_suggestions", 
                "document_chat",
                "presence_indicators",
                "activity_streams",
                "notification_system"
            ]
        )
        
        # Set up automated workflows
        if workspace_config.get("workflows"):
            workflows = await document_manager.setup_workflows(
                workspace_id=workspace.id,
                workflows=workspace_config["workflows"]
            )
        
        workspaces.append({
            "id": workspace.id,
            "name": workspace_config["name"],
            "members": len(workspace_config["members"]),
            "features": collaboration_features,
            "version_control": True,
            "workflows": len(workspace_config.get("workflows", []))
        })
    
    # Set up cross-workspace search
    global_search = await document_manager.setup_global_search(
        workspaces=[w["id"] for w in workspaces],
        search_scope=collaboration_config.get("search_scope", "user_permissions"),
        federated_search=True
    )
    
    # Configure notifications and alerts
    notification_system = await document_manager.setup_notifications(
        workspaces=[w["id"] for w in workspaces],
        notification_types=[
            "document_shared",
            "comment_added",
            "approval_required",
            "deadline_approaching",
            "version_updated"
        ],
        channels=collaboration_config.get("notification_channels", ["email", "in_app"])
    )
    
    # Set up analytics and reporting
    analytics = await document_manager.setup_collaboration_analytics(
        workspaces=[w["id"] for w in workspaces],
        metrics=[
            "document_activity",
            "user_engagement",
            "collaboration_patterns",
            "workflow_efficiency",
            "storage_usage"
        ]
    )
    
    return {
        "workspaces": workspaces,
        "global_search": True,
        "notification_system": True,
        "analytics": True,
        "total_members": sum(w["members"] for w in workspaces),
        "collaboration_features": [
            "real_time_editing",
            "version_control",
            "workflows",
            "global_search",
            "analytics"
        ]
    }

Advanced Features

Data Pipeline Automation

Intelligent data processing and ETL pipelines:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
from aimatrix.tools.storage import DataPipelineTool

# Initialize data pipeline management
data_pipeline = DataPipelineTool(
    orchestrators=["airflow", "prefect", "dagster", "argo_workflows"],
    processing_engines=["spark", "dask", "ray", "pandas"],
    streaming_platforms=["kafka", "pulsar", "kinesis", "pubsub"],
    ai_optimization=True
)

# Create intelligent data pipeline
async def create_intelligent_data_pipeline(pipeline_config: dict):
    """Create self-optimizing data pipeline"""
    
    # Analyze data sources and requirements
    pipeline_analysis = await data_pipeline.analyze_pipeline_requirements(
        data_sources=pipeline_config["sources"],
        target_destinations=pipeline_config["destinations"], 
        processing_requirements=pipeline_config["transformations"],
        sla_requirements=pipeline_config.get("sla", {"latency": "1_hour", "throughput": "1GB/hour"})
    )
    
    # Design optimal pipeline architecture
    pipeline_design = await data_pipeline.design_pipeline(
        analysis=pipeline_analysis,
        optimization_goals=pipeline_config.get("optimization", ["performance", "cost", "reliability"]),
        constraints=pipeline_config.get("constraints", {})
    )
    
    # Deploy pipeline infrastructure
    infrastructure = await data_pipeline.deploy_infrastructure(
        design=pipeline_design,
        cloud_provider=pipeline_config.get("cloud_provider", "aws"),
        scaling_config=pipeline_config.get("scaling", {"auto_scaling": True})
    )
    
    # Create data processing tasks
    processing_tasks = []
    
    for transformation in pipeline_config["transformations"]:
        task = await data_pipeline.create_processing_task(
            transformation_config=transformation,
            input_schema=transformation["input_schema"],
            output_schema=transformation["output_schema"],
            processing_engine=pipeline_design.recommended_engine,
            optimization_level="high"
        )
        
        processing_tasks.append(task)
    
    # Set up pipeline orchestration
    orchestration = await data_pipeline.setup_orchestration(
        orchestrator=pipeline_design.recommended_orchestrator,
        tasks=processing_tasks,
        schedule=pipeline_config.get("schedule", "0 */1 * * *"),  # Hourly
        dependencies=pipeline_config.get("task_dependencies", {}),
        retry_policy=pipeline_config.get("retry_policy", {"retries": 3, "backoff": "exponential"})
    )
    
    # Configure monitoring and alerting
    monitoring = await data_pipeline.setup_monitoring(
        pipeline_id=orchestration.pipeline_id,
        metrics=[
            "execution_time",
            "data_quality",
            "error_rate", 
            "throughput",
            "cost_per_run"
        ],
        alerts=[
            {"metric": "execution_time", "threshold": "2_hours", "severity": "warning"},
            {"metric": "error_rate", "threshold": 0.01, "severity": "critical"},
            {"metric": "data_quality_score", "threshold": 0.95, "operator": "less_than", "severity": "warning"}
        ]
    )
    
    # Set up data quality checks
    quality_checks = await data_pipeline.setup_data_quality_checks(
        pipeline_id=orchestration.pipeline_id,
        checks=[
            "completeness",
            "uniqueness",
            "validity", 
            "consistency",
            "freshness",
            "accuracy"
        ],
        auto_remediation=pipeline_config.get("auto_fix_quality_issues", True)
    )
    
    return {
        "pipeline_id": orchestration.pipeline_id,
        "infrastructure": infrastructure.summary,
        "processing_tasks": len(processing_tasks),
        "monitoring_enabled": True,
        "data_quality_checks": len(quality_checks),
        "estimated_monthly_cost": infrastructure.estimated_cost,
        "sla_compliance": pipeline_design.sla_compliance
    }

Data Governance and Security

Comprehensive data governance automation:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Data governance and compliance
from aimatrix.security import DataGovernanceTool

governance = DataGovernanceTool(
    compliance_frameworks=["GDPR", "HIPAA", "SOX", "CCPA"],
    data_classification=True,
    access_control=True,
    audit_logging=True
)

@governance.data_classification
async def classify_and_protect_data(data_sources: list):
    """Automatically classify and protect sensitive data"""
    
    # Scan and classify data
    classification_results = await governance.classify_data(
        sources=data_sources,
        classification_levels=["public", "internal", "confidential", "restricted"],
        auto_tagging=True
    )
    
    # Apply protection policies
    for classified_data in classification_results:
        if classified_data.level in ["confidential", "restricted"]:
            await governance.apply_protection_policy(
                data=classified_data,
                encryption=True,
                access_controls=True,
                audit_logging=True
            )
    
    return classification_results

@governance.compliance_monitoring
async def ensure_data_compliance():
    """Continuous compliance monitoring and remediation"""
    
    # Monitor compliance status
    compliance_status = await governance.check_compliance_status()
    
    # Auto-remediate compliance issues
    for issue in compliance_status.violations:
        if issue.auto_remediable:
            await governance.remediate_compliance_issue(issue)
    
    return compliance_status

Best Practices

Data Lifecycle Management

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
# Automated data lifecycle management
@data_pipeline.lifecycle_management
async def manage_data_lifecycle(data_assets: list):
    """Automate data lifecycle from creation to deletion"""
    
    for asset in data_assets:
        # Determine lifecycle stage
        stage = await data_pipeline.determine_lifecycle_stage(asset)
        
        if stage == "active":
            # Optimize for performance
            await optimize_for_performance(asset)
        elif stage == "aging":
            # Move to cheaper storage tier
            await transition_to_cold_storage(asset)
        elif stage == "archival":
            # Archive for long-term retention
            await archive_data(asset)
        elif stage == "deletion":
            # Secure deletion with compliance
            await secure_delete(asset)

Performance Optimization

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
# Intelligent performance optimization
@database.performance_optimizer
async def optimize_performance_continuously():
    """Continuous performance optimization"""
    
    # Monitor performance metrics
    metrics = await database.get_performance_metrics()
    
    # AI-powered optimization
    optimizations = await database.ai_optimize_performance(metrics)
    
    # Apply safe optimizations automatically
    for optimization in optimizations:
        if optimization.risk_level == "low":
            await database.apply_optimization(optimization)

Disaster Recovery

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
# Automated disaster recovery
@cloud_storage.disaster_recovery
async def ensure_disaster_recovery_readiness():
    """Maintain disaster recovery readiness"""
    
    # Test backup integrity
    backup_status = await cloud_storage.test_backup_integrity()
    
    # Verify recovery procedures
    recovery_test = await cloud_storage.test_recovery_procedures()
    
    # Update DR plan based on test results
    await cloud_storage.update_dr_plan(backup_status, recovery_test)

Getting Started

Quick Setup

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
# Install data and storage tools
pip install aimatrix[data-storage]

# Configure cloud storage providers
aimatrix configure --service aws-s3
aimatrix configure --service google-cloud-storage
aimatrix configure --service azure-blob

# Set up database connections
aimatrix configure --database postgresql
aimatrix configure --database mongodb

Your First Data Automation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from aimatrix import Agent
from aimatrix.tools.storage import *

# Create data management agent
data_agent = Agent(
    name="data-management-agent",
    tools=[
        FileSystemTool(),
        CloudStorageTool(),
        DatabaseTool(),
        DocumentManagementTool()
    ],
    instructions="""
    You are a data management expert. You can:
    1. Organize and optimize file systems and storage
    2. Manage databases and optimize performance
    3. Process and organize documents intelligently
    4. Ensure data security and compliance
    5. Automate backups and disaster recovery
    """
)

# Deploy data agent
await data_agent.deploy(
    environment="production",
    security_level="enterprise",
    compliance_standards=["GDPR", "SOX"]
)

Tip

Best Practice: Start with data classification and governance before implementing automation. Always test backup and recovery procedures regularly.

Warning

Security Critical: Data tools handle sensitive information. Always enable encryption, implement proper access controls, and maintain comprehensive audit logs. Comply with relevant data protection regulations.