Communication Tools

Enable AI Agents to Communicate Across All Channels

AIMatrix Communication Tools provide comprehensive connectivity to all major communication platforms, enabling AI agents to interact naturally with customers, teams, and stakeholders across email, messaging, voice, video, and collaboration platforms.

Tool Categories

📧 Email Systems

Full-featured email automation and management

  • SMTP/IMAP: Universal email protocols
  • Gmail API: Google Workspace integration
  • Outlook/Exchange: Microsoft 365 support
  • Email Intelligence: AI-powered email analysis

📱 Messaging Platforms

SMS, MMS, and instant messaging integration

  • SMS/MMS: Twilio, Vonage, MessageBird
  • WhatsApp Business: WhatsApp API
  • Telegram: Bot API and user accounts
  • Signal: End-to-end encrypted messaging

🎤 Voice & Video

Voice calls, video conferencing, and real-time communication

  • WebRTC: Real-time peer-to-peer communication
  • Zoom API: Meeting automation and management
  • Google Meet: Calendar and meeting integration
  • Voice Synthesis: Text-to-speech and voice cloning

👥 Team Collaboration

Workplace communication and collaboration tools

  • Slack: Channel management and bot integration
  • Microsoft Teams: Enterprise collaboration
  • Discord: Community and team communication
  • Mattermost: Self-hosted team messaging

Key Features

🤖 AI-Powered Communication

  • Context Understanding: Agents understand conversation history and context
  • Sentiment Analysis: Real-time emotion and tone detection
  • Language Detection: Automatic language identification and response
  • Intent Recognition: Understand user intentions and route accordingly

🔒 End-to-End Security

  • Message Encryption: Encrypt sensitive communications
  • Access Controls: Role-based permissions and authentication
  • Compliance: GDPR, HIPAA, SOX compliance support
  • Audit Trails: Complete communication logs and analytics

⚡ Real-Time Processing

  • Instant Responses: Sub-second message processing
  • Live Transcription: Real-time voice-to-text conversion
  • Streaming: Handle large volumes of concurrent conversations
  • Auto-Scaling: Dynamically scale based on communication volume

Email Integration

Gmail API Integration

Complete Gmail and Google Workspace integration:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from aimatrix.tools.communication import GmailTool

# Initialize Gmail tool
gmail = GmailTool(
    credentials_file="gmail_credentials.json",
    scopes=["https://www.googleapis.com/auth/gmail.readonly",
            "https://www.googleapis.com/auth/gmail.send"]
)

# AI agent can now manage emails
agent = AIAgent(
    name="email-assistant",
    tools=[gmail],
    instructions="""
    You are an email assistant. You can:
    1. Read and summarize incoming emails
    2. Draft and send professional responses
    3. Organize emails into folders
    4. Schedule follow-up reminders
    """
)

# Example: Process all unread emails
unread_emails = await gmail.get_unread_messages()
for email in unread_emails:
    summary = await agent.process_email(email)
    if summary.requires_response:
        response = await agent.draft_response(email, summary)
        await gmail.send_message(response)

SMTP/IMAP Universal Email

Connect to any email provider:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from aimatrix.tools.communication import SMTPTool, IMAPTool

# Setup SMTP for sending
smtp = SMTPTool(
    server="smtp.company.com",
    port=587,
    username="bot@company.com",
    password="secure_password",
    use_tls=True
)

# Setup IMAP for reading
imap = IMAPTool(
    server="imap.company.com",
    port=993,
    username="bot@company.com",
    password="secure_password",
    use_ssl=True
)

# Send automated responses
await smtp.send_email(
    to="customer@example.com",
    subject="Thank you for your inquiry",
    body="We've received your message and will respond within 24 hours.",
    attachments=["company_brochure.pdf"]
)

Email Intelligence Features

AI-powered email analysis and automation:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
# Automatic email categorization
email_categories = await gmail.categorize_emails(
    labels=["urgent", "sales", "support", "spam"]
)

# Smart reply suggestions
reply_suggestions = await gmail.generate_smart_replies(
    email_content=email.body,
    context=customer_history,
    tone="professional"
)

# Email sentiment analysis
sentiment = await gmail.analyze_sentiment(email.body)
if sentiment.score < -0.5:
    await escalate_to_human(email, "Negative sentiment detected")

Messaging Integration

WhatsApp Business API

Full WhatsApp Business integration:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from aimatrix.tools.communication import WhatsAppTool

whatsapp = WhatsAppTool(
    phone_number_id="your_phone_number_id",
    access_token="your_access_token"
)

# Handle incoming messages
@whatsapp.on_message
async def handle_message(message):
    if message.type == "text":
        # Process with AI agent
        response = await agent.process_message(message.text)
        
        # Send response
        await whatsapp.send_message(
            to=message.from_number,
            text=response.text
        )
    
    elif message.type == "image":
        # Process image with vision AI
        analysis = await agent.analyze_image(message.image_url)
        await whatsapp.send_message(
            to=message.from_number,
            text=f"I can see: {analysis.description}"
        )

# Send multimedia messages
await whatsapp.send_template_message(
    to="1234567890",
    template="order_confirmation",
    parameters={
        "customer_name": "John Doe",
        "order_number": "ORD-12345",
        "delivery_date": "Tomorrow"
    }
)

SMS/MMS with Twilio

Professional SMS and MMS capabilities:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from aimatrix.tools.communication import TwilioTool

twilio = TwilioTool(
    account_sid="your_account_sid",
    auth_token="your_auth_token",
    from_number="+1234567890"
)

# Send automated SMS notifications
await twilio.send_sms(
    to="+0987654321",
    body="Your order #12345 has been shipped and will arrive tomorrow."
)

# Send MMS with images
await twilio.send_mms(
    to="+0987654321",
    body="Here's your order tracking information:",
    media_urls=["https://example.com/tracking_image.png"]
)

# Handle incoming SMS with AI
@twilio.on_sms_received
async def handle_sms(message):
    # Process with AI agent
    response = await agent.process_sms(
        text=message.body,
        sender=message.from_number
    )
    
    # Send intelligent response
    await twilio.send_sms(
        to=message.from_number,
        body=response.text
    )

Telegram Bot Integration

Full-featured Telegram bot capabilities:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from aimatrix.tools.communication import TelegramTool

telegram = TelegramTool(
    bot_token="your_bot_token"
)

# Handle various message types
@telegram.on_message
async def handle_telegram_message(update):
    message = update.message
    
    if message.text:
        # Text message processing
        response = await agent.process_message(message.text)
        await telegram.send_message(
            chat_id=message.chat.id,
            text=response.text,
            parse_mode="HTML"
        )
    
    elif message.photo:
        # Image processing
        file_info = await telegram.get_file(message.photo[-1].file_id)
        image_analysis = await agent.analyze_image(file_info.file_path)
        
        await telegram.send_message(
            chat_id=message.chat.id,
            text=f"🖼️ I see: {image_analysis.description}"
        )

# Create custom keyboards
keyboard = telegram.create_inline_keyboard([
    [{"text": "📞 Contact Sales", "callback_data": "contact_sales"}],
    [{"text": "💬 Support Chat", "callback_data": "support_chat"}],
    [{"text": "📋 Check Order", "callback_data": "check_order"}]
])

await telegram.send_message(
    chat_id=chat_id,
    text="How can I help you today?",
    reply_markup=keyboard
)

Voice & Video Integration

WebRTC Real-Time Communication

Browser-based voice and video calling:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from aimatrix.tools.communication import WebRTCTool

webrtc = WebRTCTool(
    stun_servers=["stun:stun.l.google.com:19302"],
    ice_servers=["turn:turnserver.com"]
)

# Start voice call with AI agent
@webrtc.on_call_started
async def handle_call(call_session):
    # Start AI voice assistant
    voice_agent = await agent.start_voice_session(
        language="en-US",
        voice="neural-female"
    )
    
    # Stream audio to AI and get responses
    async for audio_chunk in call_session.audio_stream:
        # Convert speech to text
        text = await speech_to_text(audio_chunk)
        
        # Process with AI
        response = await voice_agent.process_speech(text)
        
        # Convert response to speech and stream back
        audio_response = await text_to_speech(response.text)
        await call_session.send_audio(audio_response)

Zoom API Integration

Comprehensive Zoom meeting management:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from aimatrix.tools.communication import ZoomTool

zoom = ZoomTool(
    api_key="your_api_key",
    api_secret="your_api_secret",
    account_id="your_account_id"
)

# Create and manage meetings
meeting = await zoom.create_meeting(
    topic="AI Agent Consultation",
    start_time="2025-01-21T10:00:00Z",
    duration=30,
    settings={
        "waiting_room": True,
        "recording": "local",
        "auto_recording": "cloud"
    }
)

# AI agent joins meeting
@zoom.on_meeting_started
async def join_meeting(meeting_id):
    # Start meeting bot
    meeting_bot = await agent.join_zoom_meeting(
        meeting_id=meeting_id,
        meeting_password=meeting.password
    )
    
    # Real-time transcription and responses
    async for transcript in meeting_bot.live_transcript:
        # Process conversation with AI
        response = await agent.process_meeting_transcript(transcript)
        
        if response.should_respond:
            # AI agent speaks in meeting
            await meeting_bot.speak(response.text)

# Post-meeting analysis
@zoom.on_meeting_ended
async def analyze_meeting(meeting_id, recording_url):
    # Download and analyze recording
    analysis = await agent.analyze_meeting_recording(recording_url)
    
    # Generate and send meeting summary
    summary = await agent.generate_meeting_summary(analysis)
    await gmail.send_email(
        to=meeting.participants,
        subject=f"Meeting Summary: {meeting.topic}",
        body=summary.formatted_text
    )

Voice Synthesis & Recognition

Advanced voice processing capabilities:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from aimatrix.tools.communication import VoiceTool

voice = VoiceTool(
    provider="elevenlabs",  # or "azure", "google", "aws"
    api_key="your_api_key"
)

# Text-to-speech with custom voices
audio_data = await voice.synthesize_speech(
    text="Hello! I'm your AI assistant. How can I help you today?",
    voice_id="custom_voice_clone",
    style="friendly",
    speed=1.0
)

# Speech-to-text with live transcription
@voice.on_speech_detected
async def handle_speech(audio_stream):
    # Real-time transcription
    transcript = await voice.transcribe_live(
        audio_stream=audio_stream,
        language="en-US",
        punctuation=True
    )
    
    # Process with AI agent
    response = await agent.process_voice_input(transcript.text)
    
    # Respond with synthesized voice
    response_audio = await voice.synthesize_speech(
        text=response.text,
        voice_id="ai_assistant_voice"
    )
    
    return response_audio

# Voice cloning for personalized responses
custom_voice = await voice.clone_voice(
    audio_samples=[
        "sample1.wav", "sample2.wav", "sample3.wav"
    ],
    voice_name="customer_service_voice"
)

Team Collaboration Integration

Slack Integration

Complete Slack workspace automation:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from aimatrix.tools.communication import SlackTool

slack = SlackTool(
    bot_token="xoxb-your-bot-token",
    app_token="xapp-your-app-token"
)

# Handle messages and mentions
@slack.on_mention
async def handle_mention(event):
    # Process mention with AI agent
    response = await agent.process_slack_message(
        text=event.text,
        channel=event.channel,
        user=event.user
    )
    
    # Reply in thread
    await slack.post_message(
        channel=event.channel,
        text=response.text,
        thread_ts=event.ts
    )

# Create interactive workflows
@slack.on_slash_command("/support")
async def handle_support_command(command):
    # Create interactive modal
    modal = {
        "type": "modal",
        "title": {"type": "plain_text", "text": "Support Request"},
        "blocks": [
            {
                "type": "input",
                "label": {"type": "plain_text", "text": "Issue Description"},
                "element": {"type": "plain_text_input", "multiline": True}
            },
            {
                "type": "input",
                "label": {"type": "plain_text", "text": "Priority"},
                "element": {
                    "type": "static_select",
                    "options": [
                        {"text": {"type": "plain_text", "text": "Low"}, "value": "low"},
                        {"text": {"type": "plain_text", "text": "Medium"}, "value": "medium"},
                        {"text": {"type": "plain_text", "text": "High"}, "value": "high"},
                        {"text": {"type": "plain_text", "text": "Critical"}, "value": "critical"}
                    ]
                }
            }
        ]
    }
    
    await slack.views_open(
        trigger_id=command.trigger_id,
        view=modal
    )

# Automated channel management
@slack.on_channel_created
async def setup_new_channel(channel):
    # Add AI agent to new channels
    await slack.join_channel(channel.id)
    
    # Send welcome message
    await slack.post_message(
        channel=channel.id,
        text=f"👋 Hi everyone! I'm your AI assistant for #{channel.name}. Type @ai-assistant to get help!"
    )

Microsoft Teams Integration

Enterprise collaboration and workflow automation:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from aimatrix.tools.communication import TeamsTool

teams = TeamsTool(
    client_id="your_client_id",
    client_secret="your_client_secret",
    tenant_id="your_tenant_id"
)

# Handle chat messages
@teams.on_message
async def handle_teams_message(activity):
    # Process message with AI agent
    response = await agent.process_teams_message(
        text=activity.text,
        conversation=activity.conversation,
        from_user=activity.from_property
    )
    
    # Send adaptive card response
    card = {
        "type": "AdaptiveCard",
        "version": "1.3",
        "body": [
            {
                "type": "TextBlock",
                "text": response.text,
                "wrap": True
            }
        ],
        "actions": [
            {
                "type": "Action.Submit",
                "title": "Mark as Resolved",
                "data": {"action": "resolve", "id": response.id}
            }
        ]
    }
    
    await teams.send_adaptive_card(
        conversation_id=activity.conversation.id,
        card=card
    )

# Meeting integration
@teams.on_meeting_started
async def join_meeting(meeting):
    # AI agent joins as participant
    meeting_agent = await agent.join_teams_meeting(meeting.join_url)
    
    # Take meeting notes
    async for transcript in meeting_agent.live_transcript:
        # Process and store notes
        notes = await agent.process_meeting_notes(transcript)
        await store_meeting_notes(meeting.id, notes)
    
    # Generate action items
    action_items = await agent.extract_action_items(meeting.full_transcript)
    
    # Create follow-up tasks
    for item in action_items:
        await teams.create_task(
            assignee=item.assignee,
            title=item.title,
            description=item.description,
            due_date=item.due_date
        )

Advanced Features

Multi-Channel Orchestration

Coordinate communication across multiple platforms:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from aimatrix.tools.communication import CommunicationOrchestrator

orchestrator = CommunicationOrchestrator([
    gmail, slack, whatsapp, teams, telegram
])

# Unified message handling
@orchestrator.on_message
async def handle_any_message(message, platform):
    # Process message with context from all platforms
    customer = await get_customer_by_contact(message.sender, platform)
    
    response = await agent.process_message(
        text=message.text,
        context={
            "customer": customer,
            "platform": platform,
            "history": customer.communication_history
        }
    )
    
    # Send response on the same platform
    await platform.send_message(
        to=message.sender,
        text=response.text
    )

# Cross-platform notifications
async def notify_customer(customer_id, message, urgency="normal"):
    customer = await get_customer(customer_id)
    
    if urgency == "critical":
        # Use all available channels
        channels = customer.get_all_channels()
    else:
        # Use preferred channel
        channels = [customer.preferred_channel]
    
    for channel in channels:
        await orchestrator.send_message(
            platform=channel.platform,
            to=channel.address,
            text=message
        )

Communication Analytics

Track and analyze all communication activities:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from aimatrix.analytics import CommunicationAnalytics

analytics = CommunicationAnalytics([
    gmail, slack, whatsapp, teams
])

# Real-time metrics
metrics = await analytics.get_real_time_metrics()
print(f"Messages processed: {metrics.messages_processed}")
print(f"Average response time: {metrics.avg_response_time}s")
print(f"Customer satisfaction: {metrics.satisfaction_score}/5")

# Communication insights
insights = await analytics.generate_insights(
    timeframe="last_30_days",
    include=["sentiment", "topics", "resolution_rate"]
)

# Create dashboard
dashboard = await analytics.create_dashboard([
    "message_volume_over_time",
    "response_time_by_channel",
    "customer_satisfaction_trends",
    "agent_performance_metrics"
])

Security & Compliance

End-to-End Encryption

Secure all communication channels:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
from aimatrix.security import EncryptionManager

encryption = EncryptionManager(
    key_management="azure_key_vault",  # or "aws_kms", "google_kms"
    encryption_standard="AES-256-GCM"
)

# Encrypt outgoing messages
encrypted_message = await encryption.encrypt_message(
    message="Sensitive customer data...",
    recipient_key="customer_public_key"
)

# Decrypt incoming messages
decrypted_message = await encryption.decrypt_message(
    encrypted_message=incoming_message,
    private_key="agent_private_key"
)

Compliance Management

Ensure regulatory compliance:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from aimatrix.compliance import ComplianceManager

compliance = ComplianceManager(
    standards=["GDPR", "HIPAA", "SOX", "PCI_DSS"]
)

# Data retention policies
@compliance.enforce_retention
async def handle_message(message):
    # Process message
    response = await agent.process_message(message.text)
    
    # Auto-delete after retention period
    await compliance.schedule_deletion(
        data=message,
        retention_period="7_years"  # or based on regulation
    )

# Audit logging
@compliance.audit_log
async def send_message(platform, recipient, message):
    await platform.send_message(recipient, message)
    
    # Automatic audit trail
    await compliance.log_communication(
        platform=platform.name,
        sender="ai_agent",
        recipient=recipient,
        message_hash=hash(message),
        timestamp=datetime.utcnow()
    )

Best Practices

Message Processing

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Handle different message types intelligently
async def process_message_by_type(message):
    if message.type == "question":
        return await agent.answer_question(message.text)
    elif message.type == "complaint":
        return await agent.handle_complaint(message.text, escalate=True)
    elif message.type == "order_inquiry":
        return await agent.check_order_status(message.text)
    else:
        return await agent.general_response(message.text)

# Maintain conversation context
conversation_context = {}

async def maintain_context(user_id, message):
    if user_id not in conversation_context:
        conversation_context[user_id] = []
    
    conversation_context[user_id].append(message)
    
    # Keep last 10 messages for context
    if len(conversation_context[user_id]) > 10:
        conversation_context[user_id] = conversation_context[user_id][-10:]

Error Handling & Recovery

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
from aimatrix.tools.communication import RetryManager

retry_manager = RetryManager(
    max_retries=3,
    backoff_strategy="exponential",
    retry_on=["network_error", "rate_limit", "temporary_failure"]
)

@retry_manager.with_retry
async def send_critical_message(platform, recipient, message):
    try:
        await platform.send_message(recipient, message)
    except RateLimitError:
        # Wait and retry
        await asyncio.sleep(60)
        raise  # Will trigger retry
    except NetworkError:
        # Switch to backup platform
        backup_platform = get_backup_platform(platform)
        await backup_platform.send_message(recipient, message)

Getting Started

Quick Setup

1
2
3
4
5
6
7
# Install communication tools
pip install aimatrix[communication]

# Configure credentials
aimatrix configure --service gmail
aimatrix configure --service slack
aimatrix configure --service whatsapp

Example: Multi-Channel Customer Service Bot

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
from aimatrix import Agent
from aimatrix.tools.communication import *

# Create multi-channel agent
agent = Agent(
    name="customer-service-bot",
    tools=[
        GmailTool(),
        SlackTool(), 
        WhatsAppTool(),
        TwilioTool()
    ],
    instructions="""
    You are a customer service agent that handles inquiries across multiple channels.
    Always be helpful, professional, and accurate.
    Escalate complex issues to human agents when needed.
    """
)

# Deploy and start handling messages
agent.deploy(environment="production")

Tip

Best Practice: Always test your communication integrations in sandbox/test environments before deploying to production. Most platforms provide test APIs and phone numbers.

Warning

Security Note: Never hardcode API keys or credentials in your code. Use environment variables or secure credential management systems.