Cloud & Infrastructure Tools

Cloud & Infrastructure Tools

Automate and Optimize Your Entire Cloud Infrastructure

AIMatrix Cloud & Infrastructure Tools provide comprehensive automation for managing multi-cloud environments, container orchestration, serverless computing, and infrastructure optimization. Our AI agents can provision, monitor, scale, and optimize your entire cloud infrastructure automatically.

Tool Categories

☁️ Multi-Cloud Management

Unified management across all major cloud providers

  • AWS: Complete Amazon Web Services integration
  • Google Cloud: GCP services and APIs
  • Microsoft Azure: Azure resource management
  • Alibaba Cloud: China and global regions

🐳 Container Orchestration

Advanced container and Kubernetes management

  • Kubernetes: Native K8s cluster management
  • Docker Swarm: Container swarm orchestration
  • Service Mesh: Istio, Linkerd, Consul Connect
  • GitOps: ArgoCD, Flux, automated deployments

⚡ Serverless Computing

Function-as-a-Service and event-driven architecture

  • AWS Lambda: Function deployment and management
  • Google Cloud Functions: Event-driven functions
  • Azure Functions: Serverless compute platform
  • Edge Computing: CDN and edge functions

💰 Cost Optimization

AI-powered cost analysis and optimization

  • Resource Rightsizing: Optimal resource allocation
  • Spot Instances: Automated spot market trading
  • Reserved Capacity: Intelligent reservation planning
  • Waste Detection: Identify unused resources

Key Features

🤖 AI-Powered Automation

  • Intelligent Provisioning: AI-driven resource allocation and sizing
  • Predictive Scaling: Anticipate demand and scale proactively
  • Anomaly Detection: Identify and resolve issues before they impact users
  • Self-Healing: Automatic recovery from infrastructure failures

🔒 Security & Compliance

  • Zero Trust Architecture: Comprehensive security by design
  • Compliance Automation: SOC2, PCI-DSS, HIPAA, and more
  • Vulnerability Management: Continuous security scanning
  • Identity & Access Management: Fine-grained permission control

📊 Observability & Monitoring

  • Full-Stack Monitoring: Infrastructure, applications, and user experience
  • Distributed Tracing: End-to-end request tracking
  • Log Aggregation: Centralized logging across all services
  • Custom Metrics: Business and technical KPI tracking

Multi-Cloud Management

AWS Integration

Comprehensive Amazon Web Services automation:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
from aimatrix.tools.cloud import AWSCloudTool

# Initialize AWS management
aws = AWSCloudTool(
    regions=["us-east-1", "us-west-2", "eu-west-1", "ap-southeast-1"],
    services=["ec2", "s3", "rds", "lambda", "eks", "ecs"],
    cost_optimization=True,
    auto_scaling=True
)

# AI-powered infrastructure provisioning
cloud_agent = AIAgent(
    name="aws-infrastructure-agent",
    tools=[aws],
    instructions="""
    You are an AWS infrastructure expert. You can:
    1. Provision and manage AWS resources optimally
    2. Implement cost-effective architectures
    3. Ensure security best practices
    4. Automate scaling and disaster recovery
    5. Monitor and optimize performance
    """
)

# Example: Auto-scaling web application infrastructure
@cloud_agent.task("provision_web_app_infrastructure")
async def provision_scalable_web_app(app_requirements: dict):
    """Provision optimal infrastructure for a web application"""
    
    # Analyze requirements and select optimal architecture
    architecture = await aws.design_optimal_architecture(
        requirements={
            "expected_traffic": app_requirements["expected_users"],
            "performance_requirements": app_requirements["performance_sla"],
            "availability_requirements": app_requirements["uptime_sla"],
            "compliance_requirements": app_requirements.get("compliance", []),
            "budget_constraints": app_requirements.get("budget_limit")
        }
    )
    
    # Create VPC and networking
    vpc = await aws.create_vpc(
        cidr_block=architecture.networking.vpc_cidr,
        enable_dns_hostnames=True,
        enable_dns_support=True,
        tags={"Environment": app_requirements["environment"]}
    )
    
    # Create subnets across availability zones
    subnets = []
    for az_config in architecture.networking.availability_zones:
        # Public subnets for load balancers
        public_subnet = await aws.create_subnet(
            vpc_id=vpc.id,
            cidr_block=az_config.public_subnet_cidr,
            availability_zone=az_config.az_name,
            map_public_ip_on_launch=True,
            tags={"Type": "Public", "AZ": az_config.az_name}
        )
        
        # Private subnets for application servers
        private_subnet = await aws.create_subnet(
            vpc_id=vpc.id,
            cidr_block=az_config.private_subnet_cidr,
            availability_zone=az_config.az_name,
            map_public_ip_on_launch=False,
            tags={"Type": "Private", "AZ": az_config.az_name}
        )
        
        subnets.append({
            "public": public_subnet,
            "private": private_subnet,
            "az": az_config.az_name
        })
    
    # Create Application Load Balancer
    alb = await aws.create_application_load_balancer(
        name=f"{app_requirements['app_name']}-alb",
        scheme="internet-facing",
        subnets=[s["public"].id for s in subnets],
        security_groups=[await create_alb_security_group(vpc.id)]
    )
    
    # Create Auto Scaling Group with intelligent scaling
    launch_template = await aws.create_launch_template(
        name=f"{app_requirements['app_name']}-template",
        image_id=architecture.compute.ami_id,
        instance_type=architecture.compute.instance_type,
        security_group_ids=[await create_app_security_group(vpc.id)],
        user_data=generate_user_data_script(app_requirements)
    )
    
    asg = await aws.create_auto_scaling_group(
        name=f"{app_requirements['app_name']}-asg",
        launch_template_id=launch_template.id,
        min_size=architecture.compute.min_instances,
        max_size=architecture.compute.max_instances,
        desired_capacity=architecture.compute.desired_instances,
        vpc_zone_identifier=[s["private"].id for s in subnets],
        target_group_arns=[alb.target_groups[0].arn],
        health_check_type="ELB",
        health_check_grace_period=300
    )
    
    # Set up intelligent scaling policies
    await aws.create_predictive_scaling_policy(
        auto_scaling_group_name=asg.name,
        policy_name="predictive-scaling",
        target_utilization=70,
        scale_out_cooldown=300,
        scale_in_cooldown=900,
        ml_model="demand_forecasting"
    )
    
    # Create RDS database with read replicas
    if architecture.database.required:
        db_subnet_group = await aws.create_db_subnet_group(
            name=f"{app_requirements['app_name']}-db-subnet-group",
            subnet_ids=[s["private"].id for s in subnets],
            description="Database subnet group for application"
        )
        
        primary_db = await aws.create_rds_instance(
            db_instance_identifier=f"{app_requirements['app_name']}-db",
            db_instance_class=architecture.database.instance_class,
            engine=architecture.database.engine,
            allocated_storage=architecture.database.storage_gb,
            storage_encrypted=True,
            db_subnet_group_name=db_subnet_group.name,
            vpc_security_group_ids=[await create_db_security_group(vpc.id)],
            backup_retention_period=architecture.database.backup_retention_days,
            multi_az=architecture.database.multi_az
        )
        
        # Create read replicas for read-heavy workloads
        if architecture.database.read_replicas > 0:
            for i in range(architecture.database.read_replicas):
                await aws.create_db_read_replica(
                    db_instance_identifier=f"{app_requirements['app_name']}-read-{i+1}",
                    source_db_instance_identifier=primary_db.id,
                    db_instance_class=architecture.database.replica_instance_class
                )
    
    # Set up CloudWatch monitoring and alarms
    await setup_comprehensive_monitoring(
        resources={
            "alb": alb,
            "asg": asg,
            "database": primary_db if architecture.database.required else None
        },
        app_name=app_requirements["app_name"]
    )
    
    # Create CloudFront distribution for global performance
    if architecture.cdn.enabled:
        cdn = await aws.create_cloudfront_distribution(
            origin_domain_name=alb.dns_name,
            comment=f"CDN for {app_requirements['app_name']}",
            price_class=architecture.cdn.price_class,
            cache_behaviors=architecture.cdn.cache_behaviors
        )
    
    return {
        "vpc_id": vpc.id,
        "load_balancer": {"dns_name": alb.dns_name, "arn": alb.arn},
        "auto_scaling_group": {"name": asg.name, "arn": asg.arn},
        "database": {"endpoint": primary_db.endpoint if architecture.database.required else None},
        "cdn": {"domain_name": cdn.domain_name if architecture.cdn.enabled else None},
        "estimated_monthly_cost": architecture.cost_estimate,
        "deployment_status": "completed"
    }

# Automated disaster recovery
async def setup_disaster_recovery(primary_region: str, dr_region: str, resources: dict):
    """Set up automated disaster recovery across regions"""
    
    # Create disaster recovery plan
    dr_plan = await aws.create_disaster_recovery_plan(
        primary_region=primary_region,
        dr_region=dr_region,
        resources=resources,
        rto_minutes=30,  # Recovery Time Objective
        rpo_minutes=15   # Recovery Point Objective
    )
    
    # Set up cross-region replication
    for resource_type, resource_list in resources.items():
        if resource_type == "s3_buckets":
            for bucket in resource_list:
                # Set up cross-region replication
                await aws.setup_s3_cross_region_replication(
                    source_bucket=bucket["name"],
                    source_region=primary_region,
                    destination_region=dr_region,
                    replication_time_control=True
                )
        
        elif resource_type == "rds_instances":
            for db in resource_list:
                # Create cross-region read replica
                await aws.create_cross_region_read_replica(
                    source_db_identifier=db["identifier"],
                    source_region=primary_region,
                    target_region=dr_region,
                    auto_failover=True
                )
        
        elif resource_type == "dynamodb_tables":
            for table in resource_list:
                # Enable DynamoDB Global Tables
                await aws.enable_dynamodb_global_tables(
                    table_name=table["name"],
                    regions=[primary_region, dr_region]
                )
    
    # Create automated failover triggers
    await aws.create_failover_automation(
        dr_plan_id=dr_plan.id,
        triggers=[
            {"type": "health_check_failure", "threshold": 3},
            {"type": "region_outage", "detection_method": "service_health"},
            {"type": "manual_trigger", "authorized_users": ["ops-team"]}
        ]
    )
    
    return dr_plan

# Cost optimization automation
async def optimize_aws_costs():
    """Comprehensive AWS cost optimization"""
    
    # Analyze current spending
    cost_analysis = await aws.analyze_costs(
        timeframe="last_30_days",
        granularity="service",
        include_forecasting=True
    )
    
    optimizations = []
    
    # Identify underutilized EC2 instances
    underutilized_instances = await aws.identify_underutilized_ec2_instances(
        cpu_threshold=10,  # Less than 10% CPU utilization
        network_threshold=5,  # Less than 5% network utilization
        timeframe="7_days"
    )
    
    for instance in underutilized_instances:
        # Calculate potential savings
        current_cost = await aws.get_instance_cost(instance.id)
        
        if current_cost.monthly > 50:  # Only optimize instances costing $50+ per month
            # Get rightsizing recommendations
            recommendation = await aws.get_rightsizing_recommendation(instance.id)
            
            optimizations.append({
                "type": "ec2_rightsizing",
                "instance_id": instance.id,
                "current_type": instance.type,
                "recommended_type": recommendation.recommended_type,
                "monthly_savings": recommendation.monthly_savings,
                "action": "resize" if recommendation.recommended_type else "terminate"
            })
    
    # Analyze Reserved Instance opportunities
    ri_recommendations = await aws.analyze_reserved_instance_opportunities(
        lookback_period="60_days",
        payment_option="partial_upfront",
        term="1_year"
    )
    
    for ri_rec in ri_recommendations:
        if ri_rec.estimated_savings > 1000:  # Minimum $1000 annual savings
            optimizations.append({
                "type": "reserved_instance_purchase",
                "instance_type": ri_rec.instance_type,
                "region": ri_rec.region,
                "quantity": ri_rec.recommended_quantity,
                "annual_savings": ri_rec.estimated_savings,
                "upfront_cost": ri_rec.upfront_payment
            })
    
    # Identify unused EBS volumes and snapshots
    unused_storage = await aws.identify_unused_storage_resources()
    
    for storage in unused_storage:
        if storage.type == "ebs_volume" and not storage.attached:
            optimizations.append({
                "type": "delete_unused_ebs_volume",
                "volume_id": storage.id,
                "size_gb": storage.size,
                "monthly_savings": storage.monthly_cost
            })
        
        elif storage.type == "ebs_snapshot" and storage.age_days > 90:
            # Delete old snapshots
            optimizations.append({
                "type": "delete_old_snapshot",
                "snapshot_id": storage.id,
                "age_days": storage.age_days,
                "monthly_savings": storage.monthly_cost
            })
    
    # Auto-implement low-risk optimizations
    auto_implemented = []
    
    for optimization in optimizations:
        if (optimization["type"] in ["delete_unused_ebs_volume", "delete_old_snapshot"] and
            optimization.get("monthly_savings", 0) > 10):
            
            try:
                if optimization["type"] == "delete_unused_ebs_volume":
                    await aws.delete_ebs_volume(optimization["volume_id"])
                elif optimization["type"] == "delete_old_snapshot":
                    await aws.delete_ebs_snapshot(optimization["snapshot_id"])
                
                auto_implemented.append(optimization)
                
            except Exception as e:
                logger.warning(f"Failed to auto-implement {optimization}: {str(e)}")
    
    return {
        "total_optimizations": len(optimizations),
        "potential_monthly_savings": sum(
            opt.get("monthly_savings", opt.get("annual_savings", 0) / 12)
            for opt in optimizations
        ),
        "auto_implemented": len(auto_implemented),
        "manual_review_required": [
            opt for opt in optimizations
            if opt not in auto_implemented
        ]
    }

Google Cloud Platform Integration

Complete GCP automation and management:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from aimatrix.tools.cloud import GCPCloudTool

# Initialize GCP management
gcp = GCPCloudTool(
    project_id="your-project-id",
    regions=["us-central1", "europe-west1", "asia-southeast1"],
    services=["compute", "storage", "sql", "functions", "gke", "run"],
    ai_optimization=True
)

# Automated GKE cluster management
async def manage_gke_cluster(cluster_requirements: dict):
    """Create and manage Google Kubernetes Engine clusters"""
    
    # Design optimal GKE cluster configuration
    cluster_config = await gcp.design_gke_cluster(
        workload_requirements=cluster_requirements,
        optimization_goals=["cost", "performance", "reliability"]
    )
    
    # Create GKE cluster with autopilot or standard mode
    if cluster_requirements.get("autopilot", True):
        # Use GKE Autopilot for fully managed experience
        cluster = await gcp.create_gke_autopilot_cluster(
            name=cluster_requirements["name"],
            location=cluster_config.location,
            network=cluster_config.network,
            subnet=cluster_config.subnet,
            enable_private_nodes=True,
            master_ipv4_cidr_block=cluster_config.master_cidr
        )
    else:
        # Standard GKE with custom node pools
        cluster = await gcp.create_gke_cluster(
            name=cluster_requirements["name"],
            location=cluster_config.location,
            initial_node_count=0,  # Use node pools instead
            network=cluster_config.network,
            subnetwork=cluster_config.subnet
        )
        
        # Create optimized node pools
        for node_pool_config in cluster_config.node_pools:
            await gcp.create_gke_node_pool(
                cluster_name=cluster.name,
                node_pool_name=node_pool_config.name,
                machine_type=node_pool_config.machine_type,
                disk_size_gb=node_pool_config.disk_size,
                min_node_count=node_pool_config.min_nodes,
                max_node_count=node_pool_config.max_nodes,
                preemptible=node_pool_config.use_preemptible,
                auto_upgrade=True,
                auto_repair=True
            )
    
    # Set up cluster monitoring and logging
    await gcp.enable_gke_monitoring(
        cluster_name=cluster.name,
        location=cluster_config.location,
        enable_workload_monitoring=True,
        enable_managed_prometheus=True
    )
    
    # Install essential cluster add-ons
    addons = await gcp.install_gke_addons(
        cluster_name=cluster.name,
        addons=[
            "istio",  # Service mesh
            "knative",  # Serverless containers
            "cert-manager",  # Certificate management
            "external-dns",  # DNS automation
            "ingress-nginx"  # Ingress controller
        ]
    )
    
    # Set up GitOps with Config Sync
    await gcp.enable_config_sync(
        cluster_name=cluster.name,
        repo_url=cluster_requirements.get("gitops_repo"),
        branch="main",
        sync_directory="k8s-configs"
    )
    
    return {
        "cluster": cluster,
        "addons": addons,
        "monitoring_dashboard": f"https://console.cloud.google.com/monitoring/kubernetes/clusters/{cluster.name}",
        "estimated_monthly_cost": cluster_config.cost_estimate
    }

# Cloud Functions deployment and management
async def deploy_serverless_functions(functions_config: dict):
    """Deploy and manage Google Cloud Functions"""
    
    deployed_functions = []
    
    for function_config in functions_config["functions"]:
        # Optimize function configuration
        optimized_config = await gcp.optimize_function_config(
            runtime=function_config["runtime"],
            memory_mb=function_config.get("memory", 256),
            timeout_seconds=function_config.get("timeout", 60),
            expected_concurrency=function_config.get("expected_requests", 100)
        )
        
        # Deploy function with optimal settings
        function = await gcp.deploy_cloud_function(
            name=function_config["name"],
            source_archive_url=function_config["source_url"],
            entry_point=function_config["entry_point"],
            runtime=function_config["runtime"],
            memory_mb=optimized_config.memory,
            timeout=f"{optimized_config.timeout}s",
            environment_variables=function_config.get("env_vars", {}),
            trigger={
                "type": function_config["trigger_type"],  # http, pubsub, storage, etc.
                "resource": function_config.get("trigger_resource")
            }
        )
        
        # Set up monitoring and alerting
        await gcp.create_function_monitoring(
            function_name=function.name,
            alerts=[
                {"metric": "execution_count", "threshold": 1000, "period": "5m"},
                {"metric": "execution_time", "threshold": 30000, "period": "5m"},  # 30 seconds
                {"metric": "error_rate", "threshold": 0.05, "period": "5m"}  # 5% error rate
            ]
        )
        
        deployed_functions.append({
            "name": function.name,
            "trigger_url": function.trigger_url if function_config["trigger_type"] == "http" else None,
            "status": function.status,
            "memory": optimized_config.memory,
            "timeout": optimized_config.timeout
        })
    
    return deployed_functions

# BigQuery data warehouse automation
async def setup_bigquery_analytics(data_requirements: dict):
    """Set up automated BigQuery data pipeline"""
    
    # Create datasets for different data domains
    datasets = []
    
    for domain in data_requirements["data_domains"]:
        dataset = await gcp.create_bigquery_dataset(
            dataset_id=f"{domain['name']}_data",
            description=f"Data warehouse for {domain['description']}",
            location=data_requirements.get("location", "US"),
            default_table_expiration_ms=domain.get("retention_days", 365) * 24 * 60 * 60 * 1000
        )
        
        # Create tables based on schema
        for table_config in domain["tables"]:
            table = await gcp.create_bigquery_table(
                dataset_id=dataset.id,
                table_id=table_config["name"],
                schema=table_config["schema"],
                partitioning=table_config.get("partitioning"),
                clustering=table_config.get("clustering")
            )
        
        datasets.append(dataset)
    
    # Set up automated data ingestion pipelines
    if data_requirements.get("data_sources"):
        for source in data_requirements["data_sources"]:
            if source["type"] == "cloud_storage":
                # Set up Cloud Storage to BigQuery pipeline
                transfer_job = await gcp.create_bigquery_transfer_job(
                    source_uri=source["gcs_path"],
                    destination_dataset=source["target_dataset"],
                    destination_table=source["target_table"],
                    schedule=source.get("schedule", "daily"),
                    file_format=source.get("format", "JSON")
                )
            
            elif source["type"] == "pub_sub":
                # Set up Pub/Sub to BigQuery streaming
                subscription = await gcp.create_pubsub_bigquery_subscription(
                    topic_name=source["topic"],
                    table_name=f"{source['target_dataset']}.{source['target_table']}",
                    use_topic_schema=True,
                    write_metadata=True
                )
    
    # Create automated data transformation jobs
    if data_requirements.get("transformations"):
        for transformation in data_requirements["transformations"]:
            # Create scheduled SQL queries for transformations
            scheduled_query = await gcp.create_scheduled_query(
                name=transformation["name"],
                query=transformation["sql"],
                schedule=transformation.get("schedule", "0 2 * * *"),  # Daily at 2 AM
                destination_table=transformation.get("output_table")
            )
    
    # Set up data quality monitoring
    await gcp.setup_bigquery_data_quality_monitoring(
        datasets=[d.id for d in datasets],
        quality_checks=[
            "completeness",
            "uniqueness", 
            "validity",
            "consistency",
            "freshness"
        ]
    )
    
    return {
        "datasets": [{"id": d.id, "location": d.location} for d in datasets],
        "estimated_monthly_cost": await gcp.estimate_bigquery_costs(data_requirements)
    }

Microsoft Azure Integration

Complete Azure cloud automation:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from aimatrix.tools.cloud import AzureCloudTool

# Initialize Azure management
azure = AzureCloudTool(
    subscription_id="your-subscription-id",
    regions=["eastus", "westeurope", "southeastasia"],
    services=["compute", "storage", "sql", "functions", "aks", "container_instances"],
    governance_enabled=True
)

# Azure Kubernetes Service automation
async def deploy_aks_application(app_config: dict):
    """Deploy application to Azure Kubernetes Service"""
    
    # Create resource group
    resource_group = await azure.create_resource_group(
        name=f"{app_config['app_name']}-rg",
        location=app_config["location"],
        tags=app_config.get("tags", {})
    )
    
    # Create AKS cluster with best practices
    aks_cluster = await azure.create_aks_cluster(
        resource_group_name=resource_group.name,
        cluster_name=f"{app_config['app_name']}-aks",
        location=app_config["location"],
        kubernetes_version="1.28",
        node_pools=[
            {
                "name": "system",
                "vm_size": "Standard_D4s_v3",
                "node_count": 2,
                "mode": "System",
                "availability_zones": [1, 2, 3]
            },
            {
                "name": "user",
                "vm_size": app_config.get("node_vm_size", "Standard_D8s_v3"),
                "min_count": app_config.get("min_nodes", 2),
                "max_count": app_config.get("max_nodes", 10),
                "mode": "User",
                "enable_auto_scaling": True,
                "availability_zones": [1, 2, 3]
            }
        ],
        network_plugin="azure",
        network_policy="azure",
        enable_rbac=True,
        enable_managed_identity=True,
        enable_auto_scaler=True,
        enable_monitoring=True
    )
    
    # Connect to AKS cluster
    await azure.get_aks_credentials(
        resource_group_name=resource_group.name,
        cluster_name=aks_cluster.name
    )
    
    # Deploy application using Helm charts or YAML manifests
    if app_config.get("deployment_type") == "helm":
        # Deploy using Helm
        helm_release = await azure.deploy_helm_chart(
            cluster_name=aks_cluster.name,
            chart_name=app_config["helm_chart"],
            release_name=app_config["app_name"],
            values=app_config.get("helm_values", {}),
            create_namespace=True,
            namespace=app_config.get("namespace", "default")
        )
    else:
        # Deploy using Kubernetes manifests
        deployment_result = await azure.apply_kubernetes_manifests(
            cluster_name=aks_cluster.name,
            manifests=app_config["k8s_manifests"],
            namespace=app_config.get("namespace", "default")
        )
    
    # Set up ingress controller
    ingress_controller = await azure.install_nginx_ingress_controller(
        cluster_name=aks_cluster.name,
        enable_ssl=True,
        cert_manager=True
    )
    
    # Configure application gateway (if required)
    if app_config.get("use_application_gateway"):
        app_gateway = await azure.create_application_gateway(
            resource_group_name=resource_group.name,
            gateway_name=f"{app_config['app_name']}-appgw",
            location=app_config["location"],
            sku_name="WAF_v2",
            sku_tier="WAF_v2",
            sku_capacity=2,
            enable_waf=True
        )
        
        # Enable Application Gateway Ingress Controller
        await azure.enable_agic(
            cluster_name=aks_cluster.name,
            app_gateway_id=app_gateway.id
        )
    
    # Set up monitoring and logging
    await azure.enable_container_insights(
        resource_group_name=resource_group.name,
        cluster_name=aks_cluster.name
    )
    
    # Create Azure Monitor alerts
    alerts = await azure.create_aks_monitoring_alerts(
        resource_group_name=resource_group.name,
        cluster_name=aks_cluster.name,
        alerts=[
            {"metric": "node_cpu_usage", "threshold": 80, "operator": "GreaterThan"},
            {"metric": "node_memory_usage", "threshold": 85, "operator": "GreaterThan"},
            {"metric": "pod_ready_percentage", "threshold": 95, "operator": "LessThan"}
        ]
    )
    
    return {
        "resource_group": resource_group.name,
        "cluster_name": aks_cluster.name,
        "cluster_fqdn": aks_cluster.fqdn,
        "ingress_ip": ingress_controller.external_ip,
        "monitoring_enabled": True,
        "estimated_monthly_cost": await azure.estimate_aks_cost(aks_cluster)
    }

# Azure Functions serverless automation
async def create_function_app(function_config: dict):
    """Create and deploy Azure Functions"""
    
    # Create storage account for function app
    storage_account = await azure.create_storage_account(
        resource_group_name=function_config["resource_group"],
        account_name=f"{function_config['app_name']}storage",
        location=function_config["location"],
        sku_name="Standard_LRS",
        kind="StorageV2"
    )
    
    # Create Application Insights for monitoring
    app_insights = await azure.create_application_insights(
        resource_group_name=function_config["resource_group"],
        name=f"{function_config['app_name']}-insights",
        location=function_config["location"],
        application_type="web"
    )
    
    # Create Function App
    function_app = await azure.create_function_app(
        resource_group_name=function_config["resource_group"],
        name=function_config["app_name"],
        location=function_config["location"],
        storage_account_name=storage_account.name,
        runtime_stack=function_config.get("runtime", "python"),
        runtime_version=function_config.get("runtime_version", "3.9"),
        consumption_plan=function_config.get("consumption_plan", True),
        app_insights_key=app_insights.instrumentation_key
    )
    
    # Deploy functions
    deployed_functions = []
    
    for func in function_config["functions"]:
        # Package and deploy function
        deployment = await azure.deploy_function(
            function_app_name=function_app.name,
            function_name=func["name"],
            source_code=func["source_code"],
            trigger_type=func["trigger_type"],
            trigger_config=func.get("trigger_config", {}),
            environment_variables=func.get("env_vars", {})
        )
        
        deployed_functions.append({
            "name": func["name"],
            "trigger_type": func["trigger_type"],
            "status": deployment.status,
            "invoke_url": deployment.invoke_url if func["trigger_type"] == "http" else None
        })
    
    # Set up scaling rules
    if not function_config.get("consumption_plan"):
        await azure.configure_function_app_scaling(
            function_app_name=function_app.name,
            min_instances=function_config.get("min_instances", 1),
            max_instances=function_config.get("max_instances", 10),
            scaling_rules=function_config.get("scaling_rules", [])
        )
    
    return {
        "function_app_name": function_app.name,
        "functions": deployed_functions,
        "app_insights_name": app_insights.name,
        "estimated_monthly_cost": await azure.estimate_function_app_cost(function_config)
    }

# Azure DevOps integration for CI/CD
async def setup_azure_devops_pipeline(pipeline_config: dict):
    """Set up automated CI/CD pipeline with Azure DevOps"""
    
    # Create Azure DevOps project
    project = await azure.create_devops_project(
        organization=pipeline_config["organization"],
        name=pipeline_config["project_name"],
        description=pipeline_config.get("description", ""),
        visibility="private"
    )
    
    # Create repository
    repository = await azure.create_devops_repository(
        project_name=project.name,
        repo_name=pipeline_config["repo_name"],
        import_url=pipeline_config.get("import_url")
    )
    
    # Create service connections
    service_connections = []
    
    for connection_config in pipeline_config.get("service_connections", []):
        connection = await azure.create_service_connection(
            project_name=project.name,
            connection_name=connection_config["name"],
            connection_type=connection_config["type"],  # "azure", "docker", "kubernetes", etc.
            configuration=connection_config["config"]
        )
        service_connections.append(connection)
    
    # Create build pipeline
    build_pipeline = await azure.create_build_pipeline(
        project_name=project.name,
        pipeline_name=f"{pipeline_config['app_name']}-build",
        repository_id=repository.id,
        yaml_path=pipeline_config.get("build_yaml_path", "azure-pipelines.yml"),
        variables=pipeline_config.get("build_variables", {}),
        triggers=pipeline_config.get("build_triggers", ["main"])
    )
    
    # Create release pipeline for multi-stage deployments
    if pipeline_config.get("environments"):
        release_pipeline = await azure.create_release_pipeline(
            project_name=project.name,
            pipeline_name=f"{pipeline_config['app_name']}-release",
            artifact_source=build_pipeline.id,
            environments=pipeline_config["environments"]  # dev, staging, prod
        )
        
        # Set up approval gates for production
        for env in pipeline_config["environments"]:
            if env["name"] == "production":
                await azure.configure_deployment_approvals(
                    project_name=project.name,
                    environment_name=env["name"],
                    approvers=env.get("approvers", []),
                    approval_timeout_minutes=env.get("approval_timeout", 1440)  # 24 hours
                )
    
    # Set up monitoring and alerting for pipeline
    await azure.create_pipeline_monitoring(
        project_name=project.name,
        pipeline_id=build_pipeline.id,
        alerts=[
            {"event": "build_failed", "notification": "email"},
            {"event": "deployment_failed", "notification": "teams"},
            {"event": "security_scan_failed", "notification": "email"}
        ]
    )
    
    return {
        "project_name": project.name,
        "repository_url": repository.web_url,
        "build_pipeline_id": build_pipeline.id,
        "release_pipeline_id": release_pipeline.id if pipeline_config.get("environments") else None,
        "service_connections": [sc.name for sc in service_connections]
    }

Container Orchestration

Kubernetes Advanced Management

Enterprise-grade Kubernetes automation:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
from aimatrix.tools.cloud import KubernetesTool

# Initialize Kubernetes management
k8s = KubernetesTool(
    clusters=["production", "staging", "development"],
    service_mesh="istio",
    observability_stack="prometheus",
    gitops_enabled=True
)

# Automated application deployment with best practices
async def deploy_microservices_application(app_manifest: dict):
    """Deploy complete microservices application with GitOps"""
    
    # Create namespace with security policies
    namespace = await k8s.create_namespace(
        name=app_manifest["namespace"],
        labels={
            "app": app_manifest["app_name"],
            "version": app_manifest["version"],
            "environment": app_manifest["environment"]
        },
        annotations={
            "security.istio.io/injection": "enabled"  # Enable Istio sidecar injection
        }
    )
    
    # Apply network policies
    network_policies = await k8s.create_network_policies(
        namespace=namespace.name,
        policies=[
            {
                "name": "default-deny-all",
                "policy_type": "Ingress",
                "selector": {}  # Apply to all pods
            },
            {
                "name": "allow-app-communication",
                "policy_type": "Ingress",
                "selector": {"app": app_manifest["app_name"]},
                "ingress_rules": app_manifest.get("network_rules", [])
            }
        ]
    )
    
    # Deploy each microservice
    deployed_services = []
    
    for service_config in app_manifest["services"]:
        # Create ConfigMaps and Secrets
        if service_config.get("config_maps"):
            for cm_config in service_config["config_maps"]:
                await k8s.create_config_map(
                    namespace=namespace.name,
                    name=cm_config["name"],
                    data=cm_config["data"]
                )
        
        if service_config.get("secrets"):
            for secret_config in service_config["secrets"]:
                await k8s.create_secret(
                    namespace=namespace.name,
                    name=secret_config["name"],
                    data=secret_config["data"],
                    secret_type=secret_config.get("type", "Opaque")
                )
        
        # Create Deployment with advanced features
        deployment = await k8s.create_deployment(
            namespace=namespace.name,
            name=service_config["name"],
            image=service_config["image"],
            replicas=service_config.get("replicas", 3),
            resources={
                "requests": {
                    "cpu": service_config.get("cpu_request", "100m"),
                    "memory": service_config.get("memory_request", "128Mi")
                },
                "limits": {
                    "cpu": service_config.get("cpu_limit", "500m"),
                    "memory": service_config.get("memory_limit", "512Mi")
                }
            },
            env_from=service_config.get("env_from", []),
            volumes=service_config.get("volumes", []),
            security_context={
                "run_as_non_root": True,
                "run_as_user": 10001,
                "fs_group": 20001,
                "security_context_constraints": "restricted"
            },
            liveness_probe=service_config.get("liveness_probe"),
            readiness_probe=service_config.get("readiness_probe"),
            startup_probe=service_config.get("startup_probe")
        )
        
        # Create Service
        service = await k8s.create_service(
            namespace=namespace.name,
            name=f"{service_config['name']}-service",
            selector={"app": service_config["name"]},
            ports=service_config["ports"],
            service_type=service_config.get("service_type", "ClusterIP")
        )
        
        # Create Horizontal Pod Autoscaler
        if service_config.get("auto_scaling"):
            hpa = await k8s.create_horizontal_pod_autoscaler(
                namespace=namespace.name,
                name=f"{service_config['name']}-hpa",
                target_deployment=deployment.name,
                min_replicas=service_config["auto_scaling"]["min_replicas"],
                max_replicas=service_config["auto_scaling"]["max_replicas"],
                metrics=service_config["auto_scaling"].get("metrics", [
                    {"type": "Resource", "resource": {"name": "cpu", "target": {"type": "Utilization", "averageUtilization": 70}}}
                ])
            )
        
        deployed_services.append({
            "name": service_config["name"],
            "deployment": deployment.name,
            "service": service.name,
            "status": "deployed"
        })
    
    # Create Ingress for external access
    if app_manifest.get("ingress"):
        ingress = await k8s.create_ingress(
            namespace=namespace.name,
            name=f"{app_manifest['app_name']}-ingress",
            rules=app_manifest["ingress"]["rules"],
            tls_config=app_manifest["ingress"].get("tls"),
            annotations={
                "kubernetes.io/ingress.class": "nginx",
                "cert-manager.io/cluster-issuer": "letsencrypt-prod",
                "nginx.ingress.kubernetes.io/rate-limit": "100"
            }
        )
    
    # Set up service mesh configuration
    if app_manifest.get("service_mesh_config"):
        # Create Istio VirtualService
        virtual_service = await k8s.create_istio_virtual_service(
            namespace=namespace.name,
            name=f"{app_manifest['app_name']}-vs",
            hosts=app_manifest["service_mesh_config"]["hosts"],
            http_routes=app_manifest["service_mesh_config"]["routes"]
        )
        
        # Create DestinationRule for traffic policies
        destination_rule = await k8s.create_istio_destination_rule(
            namespace=namespace.name,
            name=f"{app_manifest['app_name']}-dr",
            host=app_manifest["service_mesh_config"]["host"],
            traffic_policy=app_manifest["service_mesh_config"].get("traffic_policy", {
                "connection_pool": {
                    "tcp": {"max_connections": 10},
                    "http": {"http1_max_pending_requests": 10, "max_requests_per_connection": 2}
                },
                "outlier_detection": {
                    "consecutive_5xx_errors": 3,
                    "interval": "30s",
                    "base_ejection_time": "30s"
                }
            })
        )
    
    # Set up monitoring and observability
    await k8s.create_service_monitors(
        namespace=namespace.name,
        services=[s["name"] for s in deployed_services],
        metrics_path="/metrics",
        scrape_interval="30s"
    )
    
    # Create Grafana dashboard
    dashboard = await k8s.create_grafana_dashboard(
        name=f"{app_manifest['app_name']}-dashboard",
        services=deployed_services,
        metrics=[
            "request_rate",
            "error_rate", 
            "response_time",
            "resource_usage"
        ]
    )
    
    return {
        "namespace": namespace.name,
        "services": deployed_services,
        "ingress_url": ingress.hosts[0] if app_manifest.get("ingress") else None,
        "monitoring_dashboard": dashboard.url,
        "deployment_status": "completed"
    }

# Automated cluster upgrades
async def upgrade_kubernetes_cluster(cluster_name: str, target_version: str):
    """Safely upgrade Kubernetes cluster with zero downtime"""
    
    # Pre-upgrade checks
    upgrade_readiness = await k8s.check_upgrade_readiness(
        cluster_name=cluster_name,
        target_version=target_version
    )
    
    if not upgrade_readiness.ready:
        return {
            "status": "failed",
            "reason": "Cluster not ready for upgrade",
            "issues": upgrade_readiness.issues
        }
    
    # Backup cluster state
    backup_result = await k8s.backup_cluster_state(
        cluster_name=cluster_name,
        backup_name=f"pre-upgrade-{datetime.now().strftime('%Y%m%d-%H%M%S')}"
    )
    
    # Upgrade control plane first
    control_plane_upgrade = await k8s.upgrade_control_plane(
        cluster_name=cluster_name,
        target_version=target_version,
        drain_timeout=600  # 10 minutes
    )
    
    if not control_plane_upgrade.success:
        # Rollback control plane
        await k8s.rollback_control_plane(cluster_name, backup_result.version)
        return {
            "status": "failed",
            "reason": "Control plane upgrade failed",
            "error": control_plane_upgrade.error
        }
    
    # Upgrade node pools one by one
    node_pools = await k8s.get_node_pools(cluster_name)
    upgraded_pools = []
    
    for node_pool in node_pools:
        # Cordon and drain nodes safely
        await k8s.cordon_node_pool(cluster_name, node_pool.name)
        
        drain_result = await k8s.drain_node_pool(
            cluster_name=cluster_name,
            node_pool_name=node_pool.name,
            ignore_daemonsets=True,
            delete_local_data=True,
            timeout=900  # 15 minutes
        )
        
        if drain_result.success:
            # Upgrade node pool
            pool_upgrade = await k8s.upgrade_node_pool(
                cluster_name=cluster_name,
                node_pool_name=node_pool.name,
                target_version=target_version
            )
            
            if pool_upgrade.success:
                # Uncordon nodes
                await k8s.uncordon_node_pool(cluster_name, node_pool.name)
                upgraded_pools.append(node_pool.name)
            else:
                # Rollback this node pool
                await k8s.rollback_node_pool(cluster_name, node_pool.name, backup_result.version)
                break
    
    # Verify cluster health after upgrade
    health_check = await k8s.check_cluster_health(
        cluster_name=cluster_name,
        check_duration=300  # 5 minutes
    )
    
    if health_check.healthy:
        # Clean up old backups
        await k8s.cleanup_old_backups(cluster_name, keep_count=5)
        
        return {
            "status": "completed",
            "upgraded_version": target_version,
            "upgraded_node_pools": upgraded_pools,
            "upgrade_duration": health_check.total_duration
        }
    else:
        # Full rollback
        await k8s.rollback_cluster(cluster_name, backup_result)
        return {
            "status": "failed",
            "reason": "Cluster health check failed after upgrade",
            "rollback_completed": True
        }

# GitOps automation with ArgoCD
async def setup_gitops_deployment(gitops_config: dict):
    """Set up GitOps deployment pipeline with ArgoCD"""
    
    # Install ArgoCD
    argocd = await k8s.install_argocd(
        namespace="argocd",
        ha_mode=gitops_config.get("high_availability", True),
        ingress_config=gitops_config.get("ingress")
    )
    
    # Create ArgoCD applications for each environment
    applications = []
    
    for app_config in gitops_config["applications"]:
        app = await k8s.create_argocd_application(
            name=app_config["name"],
            project=app_config.get("project", "default"),
            repo_url=app_config["repo_url"],
            path=app_config["path"],
            target_revision=app_config.get("branch", "main"),
            destination_server=app_config.get("cluster_url", "https://kubernetes.default.svc"),
            destination_namespace=app_config["namespace"],
            sync_policy={
                "automated": {
                    "prune": app_config.get("auto_prune", True),
                    "self_heal": app_config.get("self_heal", True)
                },
                "sync_options": [
                    "CreateNamespace=true",
                    "PrunePropagationPolicy=foreground"
                ]
            }
        )
        applications.append(app)
    
    # Set up notification controllers
    if gitops_config.get("notifications"):
        await k8s.configure_argocd_notifications(
            triggers=gitops_config["notifications"].get("triggers", [
                "on-sync-succeeded",
                "on-sync-failed", 
                "on-health-degraded"
            ]),
            destinations=gitops_config["notifications"]["destinations"]  # slack, email, etc.
        )
    
    # Create RBAC policies
    await k8s.configure_argocd_rbac(
        policies=gitops_config.get("rbac_policies", []),
        default_policy="p, role:readonly, applications, get, */*, allow"
    )
    
    return {
        "argocd_url": argocd.server_url,
        "applications": [{"name": app.name, "status": app.status} for app in applications],
        "gitops_enabled": True
    }

Serverless Computing

Multi-Provider Serverless Management

Comprehensive serverless function deployment and management:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
from aimatrix.tools.cloud import ServerlessTool

# Initialize serverless management
serverless = ServerlessTool(
    providers=["aws_lambda", "gcp_functions", "azure_functions", "vercel", "netlify"],
    auto_optimization=True,
    cost_monitoring=True
)

# Intelligent serverless deployment
async def deploy_serverless_application(app_config: dict):
    """Deploy serverless application with optimal provider selection"""
    
    # Analyze requirements and select optimal providers
    provider_recommendations = await serverless.analyze_provider_suitability(
        requirements={
            "runtime": app_config["runtime"],
            "memory_requirements": app_config.get("memory_mb", 128),
            "execution_time": app_config.get("timeout_seconds", 30),
            "traffic_pattern": app_config.get("traffic_pattern", "variable"),
            "geographic_distribution": app_config.get("regions", ["us-east-1"]),
            "cost_sensitivity": app_config.get("cost_priority", "medium")
        }
    )
    
    # Select primary and fallback providers
    primary_provider = provider_recommendations.primary
    fallback_provider = provider_recommendations.fallback
    
    deployed_functions = []
    
    for function_config in app_config["functions"]:
        # Optimize function configuration
        optimized_config = await serverless.optimize_function_config(
            provider=primary_provider,
            function_config=function_config,
            optimization_goals=["performance", "cost", "cold_start"]
        )
        
        try:
            # Deploy to primary provider
            primary_deployment = await serverless.deploy_function(
                provider=primary_provider,
                function_name=function_config["name"],
                runtime=optimized_config.runtime,
                handler=function_config["handler"],
                source_code=function_config["source_code"],
                memory_mb=optimized_config.memory_mb,
                timeout_seconds=optimized_config.timeout_seconds,
                environment_variables=function_config.get("env_vars", {}),
                triggers=function_config.get("triggers", []),
                layers=function_config.get("layers", [])
            )
            
            # Set up monitoring and alerting
            await serverless.create_function_monitoring(
                provider=primary_provider,
                function_name=primary_deployment.function_name,
                alerts=[
                    {"metric": "invocation_count", "threshold": 1000, "period": "5m"},
                    {"metric": "error_rate", "threshold": 0.01, "period": "5m"},
                    {"metric": "duration", "threshold": optimized_config.timeout_seconds * 0.8, "period": "1m"}
                ]
            )
            
            deployed_functions.append({
                "name": function_config["name"],
                "provider": primary_provider,
                "function_arn": primary_deployment.function_arn,
                "invoke_url": primary_deployment.invoke_url,
                "status": "deployed"
            })
            
        except DeploymentError as e:
            # Fallback to secondary provider
            logger.warning(f"Primary deployment failed: {str(e)}. Trying fallback provider.")
            
            fallback_deployment = await serverless.deploy_function(
                provider=fallback_provider,
                function_name=function_config["name"],
                runtime=function_config["runtime"],
                handler=function_config["handler"],
                source_code=function_config["source_code"],
                memory_mb=function_config.get("memory_mb", 128),
                timeout_seconds=function_config.get("timeout_seconds", 30),
                environment_variables=function_config.get("env_vars", {}),
                triggers=function_config.get("triggers", [])
            )
            
            deployed_functions.append({
                "name": function_config["name"],
                "provider": fallback_provider,
                "function_arn": fallback_deployment.function_arn,
                "invoke_url": fallback_deployment.invoke_url,
                "status": "deployed_fallback"
            })
    
    # Set up API Gateway for HTTP functions
    api_functions = [f for f in deployed_functions if any(
        t.get("type") == "http" for t in app_config["functions"] 
        if f["name"] == function_config["name"]
        for t in function_config.get("triggers", [])
    )]
    
    if api_functions:
        api_gateway = await serverless.create_api_gateway(
            provider=primary_provider,
            api_name=f"{app_config['app_name']}-api",
            functions=api_functions,
            cors_config=app_config.get("cors"),
            auth_config=app_config.get("authentication"),
            rate_limiting=app_config.get("rate_limiting")
        )
    
    # Set up global load balancing for multi-region deployments
    if len(app_config.get("regions", [])) > 1:
        load_balancer = await serverless.create_global_load_balancer(
            name=f"{app_config['app_name']}-lb",
            endpoints=deployed_functions,
            routing_policy=app_config.get("routing_policy", "latency_based")
        )
    
    return {
        "deployed_functions": deployed_functions,
        "api_gateway": api_gateway.url if api_functions else None,
        "global_load_balancer": load_balancer.url if len(app_config.get("regions", [])) > 1 else None,
        "estimated_monthly_cost": await serverless.estimate_costs(deployed_functions)
    }

# Serverless workflow orchestration
async def create_serverless_workflow(workflow_config: dict):
    """Create complex serverless workflows with step functions"""
    
    # Design workflow state machine
    state_machine = await serverless.design_state_machine(
        workflow_name=workflow_config["name"],
        steps=workflow_config["steps"],
        error_handling=workflow_config.get("error_handling", {
            "retry_attempts": 3,
            "backoff_rate": 2.0,
            "catch_all_errors": True
        })
    )
    
    # Deploy supporting functions
    deployed_functions = []
    
    for step in workflow_config["steps"]:
        if step["type"] == "function":
            function_deployment = await serverless.deploy_function(
                provider="aws_lambda",  # Use AWS Step Functions
                function_name=step["function_name"],
                runtime=step.get("runtime", "python3.9"),
                handler=step["handler"],
                source_code=step["source_code"],
                memory_mb=step.get("memory_mb", 256),
                timeout_seconds=step.get("timeout_seconds", 60),
                environment_variables=step.get("env_vars", {}),
                role_arn=await get_function_execution_role()
            )
            
            deployed_functions.append(function_deployment)
    
    # Create Step Functions state machine
    step_function = await serverless.create_step_function(
        name=workflow_config["name"],
        definition=state_machine.definition,
        role_arn=await get_step_function_execution_role(),
        logging_config={
            "level": "ALL",
            "include_execution_data": True,
            "destinations": [
                {"cloud_watch_logs_log_group": f"/aws/stepfunctions/{workflow_config['name']}"}
            ]
        }
    )
    
    # Set up workflow triggers
    if workflow_config.get("triggers"):
        for trigger in workflow_config["triggers"]:
            if trigger["type"] == "schedule":
                # CloudWatch Events rule for scheduled execution
                await serverless.create_scheduled_trigger(
                    rule_name=f"{workflow_config['name']}-schedule",
                    schedule_expression=trigger["schedule"],
                    target_arn=step_function.arn
                )
            
            elif trigger["type"] == "s3_event":
                # S3 event trigger
                await serverless.create_s3_trigger(
                    bucket_name=trigger["bucket"],
                    event_type=trigger["event_type"],
                    target_arn=step_function.arn
                )
            
            elif trigger["type"] == "api_gateway":
                # API Gateway trigger
                api = await serverless.create_api_gateway_workflow_trigger(
                    api_name=f"{workflow_config['name']}-api",
                    path=trigger["path"],
                    method=trigger["method"],
                    target_arn=step_function.arn
                )
    
    # Set up monitoring
    await serverless.create_workflow_monitoring(
        state_machine_name=step_function.name,
        alerts=[
            {"metric": "ExecutionsFailed", "threshold": 1, "period": "5m"},
            {"metric": "ExecutionThrottled", "threshold": 1, "period": "1m"},
            {"metric": "ExecutionTime", "threshold": 300000, "period": "5m"}  # 5 minutes
        ]
    )
    
    return {
        "state_machine_arn": step_function.arn,
        "deployed_functions": [f.function_arn for f in deployed_functions],
        "triggers": [t["type"] for t in workflow_config.get("triggers", [])],
        "monitoring_enabled": True
    }

# Edge computing with serverless
async def deploy_edge_functions(edge_config: dict):
    """Deploy functions to edge locations for low latency"""
    
    # Analyze optimal edge locations
    edge_locations = await serverless.analyze_optimal_edge_locations(
        user_distribution=edge_config.get("user_distribution", {}),
        performance_requirements=edge_config.get("latency_requirements", {"max_latency_ms": 100}),
        data_residency_requirements=edge_config.get("data_residency", [])
    )
    
    deployed_edge_functions = []
    
    for function_config in edge_config["functions"]:
        # Deploy to CloudFlare Workers
        if "cloudflare" in edge_config.get("providers", []):
            cf_deployment = await serverless.deploy_cloudflare_worker(
                name=function_config["name"],
                script=function_config["script"],
                routes=function_config.get("routes", []),
                environment_variables=function_config.get("env_vars", {}),
                kv_namespaces=function_config.get("kv_namespaces", [])
            )
            
            deployed_edge_functions.append({
                "provider": "cloudflare",
                "name": cf_deployment.name,
                "routes": cf_deployment.routes,
                "locations": "global"
            })
        
        # Deploy to AWS Lambda@Edge
        if "aws_lambda_edge" in edge_config.get("providers", []):
            # Create CloudFront distribution with Lambda@Edge
            lambda_edge = await serverless.deploy_lambda_edge(
                function_name=function_config["name"],
                runtime="nodejs14.x",
                handler=function_config["handler"],
                source_code=function_config["source_code"],
                trigger_events=function_config.get("cloudfront_events", ["viewer-request"])
            )
            
            cloudfront = await serverless.create_cloudfront_with_lambda_edge(
                distribution_config={
                    "origins": function_config.get("origins", []),
                    "default_cache_behavior": {
                        "lambda_function_associations": [
                            {
                                "event_type": event,
                                "lambda_function_arn": lambda_edge.qualified_arn
                            }
                            for event in function_config.get("cloudfront_events", ["viewer-request"])
                        ]
                    }
                }
            )
            
            deployed_edge_functions.append({
                "provider": "aws_lambda_edge",
                "name": lambda_edge.function_name,
                "distribution_domain": cloudfront.domain_name,
                "locations": "global"
            })
        
        # Deploy to Vercel Edge Functions
        if "vercel" in edge_config.get("providers", []):
            vercel_deployment = await serverless.deploy_vercel_edge_function(
                name=function_config["name"],
                source_code=function_config["source_code"],
                runtime=function_config.get("runtime", "edge"),
                routes=function_config.get("routes", []),
                environment_variables=function_config.get("env_vars", {})
            )
            
            deployed_edge_functions.append({
                "provider": "vercel",
                "name": vercel_deployment.name,
                "url": vercel_deployment.url,
                "locations": "global"
            })
    
    # Set up global performance monitoring
    await serverless.create_edge_monitoring(
        functions=deployed_edge_functions,
        metrics=["latency", "error_rate", "cache_hit_ratio", "data_transfer"],
        alert_thresholds={
            "latency_p95": 200,  # 200ms
            "error_rate": 0.01,   # 1%
            "availability": 99.9   # 99.9%
        }
    )
    
    return {
        "deployed_functions": deployed_edge_functions,
        "total_edge_locations": sum(len(f.get("locations", [])) for f in deployed_edge_functions),
        "global_performance_monitoring": True
    }

Cost Optimization

Intelligent Resource Management

AI-powered cost optimization across all cloud services:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from aimatrix.tools.cloud import CostOptimizationTool

# Initialize cost optimization
cost_optimizer = CostOptimizationTool(
    providers=["aws", "gcp", "azure"],
    optimization_goals=["cost", "performance", "sustainability"],
    automation_level="full"
)

# Comprehensive cost analysis
async def analyze_and_optimize_costs():
    """Comprehensive cost analysis and optimization"""
    
    # Get current spending data
    cost_analysis = await cost_optimizer.analyze_current_spending(
        timeframe="last_90_days",
        granularity="service",
        include_forecasting=True,
        breakdown_by=["service", "region", "project", "environment"]
    )
    
    # Identify optimization opportunities
    optimization_opportunities = await cost_optimizer.identify_optimization_opportunities(
        min_savings_threshold=100,  # Minimum $100 monthly savings
        risk_tolerance="medium",
        business_constraints={
            "peak_hours": ["09:00-17:00"],
            "critical_services": ["production_db", "api_gateway"],
            "compliance_requirements": ["data_residency", "high_availability"]
        }
    )
    
    # Categorize opportunities by type and impact
    categorized_opportunities = {
        "immediate_wins": [],  # Low risk, high impact
        "scheduled_optimizations": [],  # Require planning
        "architectural_changes": [],  # Long-term improvements
        "policy_recommendations": []  # Process improvements
    }
    
    for opportunity in optimization_opportunities:
        if opportunity.risk_level == "low" and opportunity.monthly_savings > 500:
            categorized_opportunities["immediate_wins"].append(opportunity)
        elif opportunity.requires_downtime or opportunity.risk_level == "medium":
            categorized_opportunities["scheduled_optimizations"].append(opportunity)
        elif opportunity.type in ["architecture_redesign", "service_migration"]:
            categorized_opportunities["architectural_changes"].append(opportunity)
        else:
            categorized_opportunities["policy_recommendations"].append(opportunity)
    
    # Auto-implement immediate wins
    implemented_optimizations = []
    
    for opportunity in categorized_opportunities["immediate_wins"]:
        try:
            implementation_result = await cost_optimizer.implement_optimization(opportunity)
            
            if implementation_result.success:
                implemented_optimizations.append({
                    "opportunity": opportunity,
                    "result": implementation_result,
                    "estimated_savings": opportunity.monthly_savings
                })
            
        except Exception as e:
            logger.error(f"Failed to implement optimization {opportunity.id}: {str(e)}")
    
    # Schedule medium-risk optimizations
    scheduled_optimizations = []
    
    for opportunity in categorized_opportunities["scheduled_optimizations"]:
        # Find optimal maintenance window
        maintenance_window = await cost_optimizer.find_optimal_maintenance_window(
            resources=opportunity.affected_resources,
            duration_minutes=opportunity.estimated_implementation_time,
            constraints={
                "avoid_peak_hours": True,
                "minimize_user_impact": True,
                "compliance_windows": opportunity.compliance_windows
            }
        )
        
        # Schedule optimization
        scheduled_task = await cost_optimizer.schedule_optimization(
            opportunity=opportunity,
            scheduled_time=maintenance_window.start_time,
            approval_required=opportunity.risk_level == "medium",
            rollback_plan=opportunity.rollback_strategy
        )
        
        scheduled_optimizations.append(scheduled_task)
    
    # Generate recommendations report
    recommendations_report = await cost_optimizer.generate_recommendations_report(
        opportunities=categorized_opportunities,
        implemented=implemented_optimizations,
        scheduled=scheduled_optimizations,
        include_roi_analysis=True
    )
    
    return {
        "current_monthly_spend": cost_analysis.current_monthly_spend,
        "projected_monthly_spend": cost_analysis.projected_monthly_spend,
        "immediate_savings": sum(opt["estimated_savings"] for opt in implemented_optimizations),
        "potential_additional_savings": sum(
            opt.monthly_savings for opt in 
            categorized_opportunities["scheduled_optimizations"] + 
            categorized_opportunities["architectural_changes"]
        ),
        "implemented_optimizations": len(implemented_optimizations),
        "scheduled_optimizations": len(scheduled_optimizations),
        "recommendations_report": recommendations_report
    }

# Spot instance automation
async def optimize_spot_instance_usage():
    """Intelligent spot instance management for cost savings"""
    
    # Analyze workloads suitable for spot instances
    spot_candidates = await cost_optimizer.analyze_spot_instance_candidates(
        criteria={
            "fault_tolerant": True,
            "batch_processing": True,
            "development_workloads": True,
            "stateless_applications": True
        },
        savings_threshold=30  # Minimum 30% savings
    )
    
    optimized_workloads = []
    
    for candidate in spot_candidates:
        # Get spot pricing history and forecast
        spot_analysis = await cost_optimizer.analyze_spot_pricing(
            instance_type=candidate.instance_type,
            availability_zone=candidate.availability_zone,
            lookback_days=30,
            forecast_days=7
        )
        
        # Calculate optimal bid price
        optimal_bid = await cost_optimizer.calculate_optimal_spot_bid(
            on_demand_price=candidate.on_demand_price,
            spot_history=spot_analysis.price_history,
            interruption_tolerance=candidate.interruption_tolerance,
            target_availability=candidate.target_availability
        )
        
        if optimal_bid.expected_savings > candidate.minimum_savings:
            # Create spot fleet configuration
            spot_fleet_config = await cost_optimizer.create_spot_fleet_config(
                target_capacity=candidate.desired_capacity,
                instance_types=candidate.instance_types,
                availability_zones=candidate.availability_zones,
                bid_price=optimal_bid.recommended_bid,
                diversification_strategy="diversified",
                replacement_strategy="launch_before_terminate"
            )
            
            # Launch spot fleet
            spot_fleet = await cost_optimizer.launch_spot_fleet(spot_fleet_config)
            
            # Set up monitoring and auto-scaling
            await cost_optimizer.setup_spot_fleet_monitoring(
                fleet_id=spot_fleet.id,
                alerts=[
                    {"metric": "spot_price_increase", "threshold": optimal_bid.recommended_bid * 0.9},
                    {"metric": "interruption_rate", "threshold": 0.05},  # 5% interruption rate
                    {"metric": "capacity_utilization", "threshold": 80}
                ]
            )
            
            # Configure automatic fallback to on-demand
            await cost_optimizer.configure_spot_fallback(
                fleet_id=spot_fleet.id,
                fallback_strategy="on_demand",
                trigger_conditions=["high_spot_prices", "low_availability", "critical_workload"]
            )
            
            optimized_workloads.append({
                "workload": candidate.workload_name,
                "spot_fleet_id": spot_fleet.id,
                "expected_monthly_savings": optimal_bid.expected_savings,
                "target_availability": candidate.target_availability
            })
    
    return {
        "optimized_workloads": len(optimized_workloads),
        "total_monthly_savings": sum(w["expected_monthly_savings"] for w in optimized_workloads),
        "workloads": optimized_workloads
    }

# Reserved instance optimization
async def optimize_reserved_instances():
    """Intelligent reserved instance planning and management"""
    
    # Analyze usage patterns
    usage_analysis = await cost_optimizer.analyze_compute_usage_patterns(
        lookback_months=12,
        forecasting_months=12,
        granularity="hourly"
    )
    
    # Identify RI opportunities
    ri_opportunities = await cost_optimizer.identify_ri_opportunities(
        usage_patterns=usage_analysis,
        commitment_terms=["1_year", "3_year"],
        payment_options=["no_upfront", "partial_upfront", "all_upfront"],
        minimum_utilization=80,  # 80% minimum utilization
        minimum_savings=20  # 20% minimum savings
    )
    
    # Optimize RI portfolio
    optimized_portfolio = await cost_optimizer.optimize_ri_portfolio(
        current_ris=await cost_optimizer.get_current_reserved_instances(),
        opportunities=ri_opportunities,
        budget_constraints={
            "max_upfront_payment": 100000,  # $100k max upfront
            "max_monthly_commitment": 50000  # $50k max monthly
        },
        optimization_objective="maximize_savings"
    )
    
    # Calculate portfolio changes
    portfolio_changes = []
    
    # New RI purchases
    for new_ri in optimized_portfolio.recommended_purchases:
        portfolio_changes.append({
            "action": "purchase",
            "instance_type": new_ri.instance_type,
            "region": new_ri.region,
            "term": new_ri.term,
            "payment_option": new_ri.payment_option,
            "quantity": new_ri.quantity,
            "annual_savings": new_ri.annual_savings,
            "upfront_cost": new_ri.upfront_cost
        })
    
    # RI modifications
    for modification in optimized_portfolio.recommended_modifications:
        portfolio_changes.append({
            "action": "modify",
            "current_ri_id": modification.ri_id,
            "modification_type": modification.type,  # "split", "merge", "exchange"
            "target_instance_type": modification.target_instance_type,
            "target_availability_zone": modification.target_availability_zone,
            "expected_improvement": modification.utilization_improvement
        })
    
    # Auto-implement low-risk changes
    implemented_changes = []
    
    for change in portfolio_changes:
        if (change["action"] == "purchase" and 
            change["annual_savings"] > 5000 and 
            change["upfront_cost"] < 10000):
            
            # Auto-purchase high-savings, low-risk RIs
            purchase_result = await cost_optimizer.purchase_reserved_instance(
                instance_type=change["instance_type"],
                region=change["region"],
                term=change["term"],
                payment_option=change["payment_option"],
                quantity=change["quantity"]
            )
            
            if purchase_result.success:
                implemented_changes.append({
                    "change": change,
                    "ri_id": purchase_result.ri_id,
                    "purchase_time": purchase_result.purchase_time
                })
    
    return {
        "total_portfolio_value": optimized_portfolio.total_value,
        "potential_annual_savings": optimized_portfolio.total_annual_savings,
        "recommended_changes": len(portfolio_changes),
        "auto_implemented": len(implemented_changes),
        "roi_analysis": optimized_portfolio.roi_analysis
    }

Best Practices

Infrastructure as Code

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# Automated infrastructure provisioning
from aimatrix.tools.cloud import InfrastructureAsCodeTool

iac = InfrastructureAsCodeTool(
    tools=["terraform", "cloudformation", "pulumi", "cdk"],
    version_control=True,
    ci_cd_integration=True
)

@iac.infrastructure_template
async def provision_secure_infrastructure(requirements: dict):
    """Provision infrastructure following security best practices"""
    
    # Generate IaC templates
    templates = await iac.generate_templates(
        requirements=requirements,
        best_practices=["security", "cost_optimization", "high_availability"],
        compliance_standards=["CIS", "NIST", "SOC2"]
    )
    
    # Validate templates
    validation_results = await iac.validate_templates(templates)
    
    if validation_results.has_issues:
        templates = await iac.fix_validation_issues(templates, validation_results)
    
    # Deploy with approval workflow
    deployment = await iac.deploy_with_approval(
        templates=templates,
        environment="production",
        approval_required=True
    )
    
    return deployment

Security Automation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Automated security compliance
from aimatrix.security import CloudSecurityTool

security = CloudSecurityTool(
    continuous_monitoring=True,
    automated_remediation=True,
    compliance_frameworks=["CIS", "NIST", "PCI_DSS"]
)

@security.continuous_compliance_check
async def ensure_security_compliance():
    """Continuous security compliance monitoring"""
    
    # Scan for misconfigurations
    misconfigurations = await security.scan_misconfigurations()
    
    # Auto-remediate low-risk issues
    for issue in misconfigurations:
        if issue.risk_level == "low" and issue.auto_remediable:
            await security.remediate_issue(issue)
    
    # Alert on high-risk issues
    for issue in misconfigurations:
        if issue.risk_level == "high":
            await security.create_security_alert(issue)

Performance Monitoring

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# Comprehensive monitoring setup
from aimatrix.tools.cloud import MonitoringTool

monitoring = MonitoringTool(
    full_stack_monitoring=True,
    ai_powered_anomaly_detection=True,
    custom_dashboards=True
)

@monitoring.setup_comprehensive_monitoring
async def monitor_infrastructure(resources: dict):
    """Set up comprehensive monitoring for all resources"""
    
    # Create monitoring stack
    monitoring_stack = await monitoring.deploy_monitoring_stack(
        resources=resources,
        metrics=["performance", "availability", "security", "cost"],
        retention_days=90
    )
    
    # Set up AI-powered alerting
    await monitoring.configure_intelligent_alerting(
        resources=resources,
        alert_intelligence=True,
        noise_reduction=True
    )
    
    return monitoring_stack

Getting Started

Quick Setup

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
# Install cloud tools
pip install aimatrix[cloud]

# Configure cloud providers
aimatrix configure --provider aws
aimatrix configure --provider gcp  
aimatrix configure --provider azure

# Set up multi-cloud management
aimatrix setup-multicloud --optimization enabled

Your First Cloud Automation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from aimatrix import Agent
from aimatrix.tools.cloud import *

# Create cloud automation agent
cloud_agent = Agent(
    name="cloud-infrastructure-agent",
    tools=[
        AWSCloudTool(),
        GCPCloudTool(),
        AzureCloudTool(),
        KubernetesTool(),
        CostOptimizationTool()
    ],
    instructions="""
    You are a cloud infrastructure expert. You can:
    1. Provision and manage multi-cloud infrastructure
    2. Optimize costs and performance automatically
    3. Ensure security and compliance
    4. Manage containers and serverless functions
    5. Monitor and troubleshoot issues proactively
    """
)

# Deploy cloud agent
await cloud_agent.deploy(
    environment="production",
    multi_cloud=True,
    cost_optimization=True
)

Tip

Best Practice: Start with infrastructure as code templates and gradually add AI-powered optimization. Always test in non-production environments first.

Warning

Security Note: Cloud infrastructure requires careful security configuration. Always enable monitoring, use least-privilege access, and regularly audit your infrastructure for misconfigurations.