Monitoring & Observability

Monitoring & Observability

Comprehensive monitoring and observability are crucial for maintaining reliable AIMatrix applications at scale. This guide covers performance monitoring, alerting, debugging, and optimization strategies for Supabase-powered systems.

Observability Architecture

  graph TB
    subgraph "Application Layer"
        CLIENT[Client Apps]
        EDGE[Edge Functions]
        REALTIME[Real-time Features]
    end
    
    subgraph "Supabase Services"
        DB[(Database)]
        STORAGE[Storage]
        AUTH[Auth]
        API[API Gateway]
    end
    
    subgraph "Monitoring Stack"
        LOGS[Log Aggregation]
        METRICS[Metrics Collection]
        TRACES[Distributed Tracing]
        ALERTS[Alerting System]
    end
    
    subgraph "Observability Tools"
        GRAFANA[Grafana Dashboards]
        PROMETHEUS[Prometheus]
        JAEGER[Jaeger Tracing]
        SENTRY[Error Tracking]
    end
    
    subgraph "External Monitoring"
        UPTIME[Uptime Monitoring]
        PERF[Performance Testing]
        COST[Cost Monitoring]
    end
    
    CLIENT --> DB
    EDGE --> DB
    REALTIME --> DB
    
    DB --> LOGS
    STORAGE --> METRICS
    AUTH --> TRACES
    API --> ALERTS
    
    LOGS --> GRAFANA
    METRICS --> PROMETHEUS
    TRACES --> JAEGER
    ALERTS --> SENTRY
    
    GRAFANA --> UPTIME
    PROMETHEUS --> PERF
    JAEGER --> COST

Database Performance Monitoring

Query Performance Analytics

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
-- Create performance monitoring tables
CREATE TABLE query_performance_logs (
    id UUID PRIMARY KEY DEFAULT uuid_generate_v4(),
    query_hash TEXT NOT NULL,
    query_text TEXT,
    execution_time_ms DECIMAL,
    rows_returned INTEGER,
    rows_examined INTEGER,
    index_usage JSONB,
    user_id UUID,
    organization_id UUID,
    created_at TIMESTAMPTZ DEFAULT NOW()
);

-- Create indexes for performance queries
CREATE INDEX idx_query_perf_hash ON query_performance_logs(query_hash);
CREATE INDEX idx_query_perf_time ON query_performance_logs(created_at);
CREATE INDEX idx_query_perf_duration ON query_performance_logs(execution_time_ms);

-- Function to log slow queries
CREATE OR REPLACE FUNCTION log_slow_query(
    query_text TEXT,
    execution_time_ms DECIMAL,
    rows_returned INTEGER DEFAULT NULL,
    user_id UUID DEFAULT NULL
)
RETURNS VOID AS $$
DECLARE
    query_hash TEXT;
BEGIN
    -- Generate hash for query normalization
    query_hash := encode(digest(regexp_replace(query_text, '\s+', ' ', 'g'), 'sha256'), 'hex');
    
    -- Log only if execution time exceeds threshold
    IF execution_time_ms > 1000 THEN -- 1 second threshold
        INSERT INTO query_performance_logs (
            query_hash,
            query_text,
            execution_time_ms,
            rows_returned,
            user_id,
            organization_id
        ) VALUES (
            query_hash,
            query_text,
            execution_time_ms,
            rows_returned,
            user_id,
            (SELECT organization_id FROM users WHERE id = user_id)
        );
    END IF;
END;
$$ LANGUAGE plpgsql;

-- View for query performance analysis
CREATE VIEW slow_queries_summary AS
SELECT 
    query_hash,
    LEFT(query_text, 100) as query_preview,
    COUNT(*) as occurrence_count,
    AVG(execution_time_ms) as avg_execution_time,
    MAX(execution_time_ms) as max_execution_time,
    AVG(rows_returned) as avg_rows_returned,
    DATE_TRUNC('hour', created_at) as hour_bucket
FROM query_performance_logs
WHERE created_at >= NOW() - INTERVAL '24 hours'
GROUP BY query_hash, query_text, hour_bucket
HAVING COUNT(*) > 5 OR AVG(execution_time_ms) > 500
ORDER BY avg_execution_time DESC;

Database Health Monitoring

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
class DatabaseHealthMonitor {
  private supabase: SupabaseClient

  constructor() {
    this.supabase = createClient(
      process.env.SUPABASE_URL!,
      process.env.SUPABASE_SERVICE_ROLE_KEY!
    )
  }

  async getConnectionStats(): Promise<ConnectionStats> {
    const { data, error } = await this.supabase.rpc('get_connection_stats')
    
    if (error) throw error
    
    return {
      activeConnections: data.active_connections,
      maxConnections: data.max_connections,
      connectionUtilization: data.active_connections / data.max_connections,
      idleConnections: data.idle_connections,
      waitingConnections: data.waiting_connections
    }
  }

  async getTableStats(): Promise<TableStats[]> {
    const { data, error } = await this.supabase.rpc('get_table_stats')
    
    if (error) throw error
    
    return data.map((table: any) => ({
      tableName: table.table_name,
      rowCount: table.row_count,
      tableSize: table.table_size,
      indexSize: table.index_size,
      lastVacuum: table.last_vacuum,
      lastAnalyze: table.last_analyze
    }))
  }

  async getQueryPerformance(timeRange: string = '1 hour'): Promise<QueryStats[]> {
    const { data, error } = await this.supabase
      .from('slow_queries_summary')
      .select('*')
      .gte('hour_bucket', `now() - interval '${timeRange}'`)
      .order('avg_execution_time', { ascending: false })
      .limit(20)

    if (error) throw error

    return data.map(query => ({
      queryHash: query.query_hash,
      queryPreview: query.query_preview,
      occurrenceCount: query.occurrence_count,
      avgExecutionTime: query.avg_execution_time,
      maxExecutionTime: query.max_execution_time,
      avgRowsReturned: query.avg_rows_returned
    }))
  }

  async checkIndexEfficiency(): Promise<IndexStats[]> {
    const { data, error } = await this.supabase.rpc('analyze_index_usage')
    
    if (error) throw error
    
    return data
      .filter((index: any) => index.usage_ratio < 0.1) // Unused indexes
      .map((index: any) => ({
        tableName: index.table_name,
        indexName: index.index_name,
        indexSize: index.index_size,
        usageRatio: index.usage_ratio,
        scansCount: index.scans_count,
        recommendation: index.usage_ratio === 0 ? 'DROP' : 'REVIEW'
      }))
  }
}

interface ConnectionStats {
  activeConnections: number
  maxConnections: number
  connectionUtilization: number
  idleConnections: number
  waitingConnections: number
}

interface TableStats {
  tableName: string
  rowCount: number
  tableSize: string
  indexSize: string
  lastVacuum: string
  lastAnalyze: string
}

interface QueryStats {
  queryHash: string
  queryPreview: string
  occurrenceCount: number
  avgExecutionTime: number
  maxExecutionTime: number
  avgRowsReturned: number
}

interface IndexStats {
  tableName: string
  indexName: string
  indexSize: string
  usageRatio: number
  scansCount: number
  recommendation: string
}

Vector Database Monitoring

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class VectorDBMonitor {
  async getVectorIndexStats(): Promise<VectorIndexStats[]> {
    const { data, error } = await this.supabase.rpc('get_vector_index_stats')
    
    if (error) throw error
    
    return data.map((index: any) => ({
      tableName: index.table_name,
      columnName: index.column_name,
      indexType: index.index_type,
      indexSize: index.index_size,
      vectorCount: index.vector_count,
      averageQueryTime: index.avg_query_time,
      indexParameters: index.index_parameters
    }))
  }

  async monitorVectorQueries(): Promise<VectorQueryStats[]> {
    const { data, error } = await this.supabase
      .from('vector_query_logs')
      .select('*')
      .gte('created_at', new Date(Date.now() - 24 * 60 * 60 * 1000).toISOString())
      .order('query_time_ms', { ascending: false })
      .limit(100)

    if (error) throw error

    return data.map(log => ({
      queryType: log.query_type,
      similarityThreshold: log.similarity_threshold,
      vectorDimension: log.vector_dimension,
      queryTimeMs: log.query_time_ms,
      resultCount: log.result_count,
      indexUsed: log.index_used,
      createdAt: log.created_at
    }))
  }

  async getEmbeddingGenerationStats(): Promise<EmbeddingStats> {
    const { data, error } = await this.supabase
      .from('embedding_generation_logs')
      .select('*')
      .gte('created_at', new Date(Date.now() - 24 * 60 * 60 * 1000).toISOString())

    if (error) throw error

    const stats = data.reduce((acc, log) => {
      acc.totalGenerations++
      acc.totalTokens += log.token_count
      acc.totalTime += log.generation_time_ms
      if (log.error) acc.errorCount++
      return acc
    }, {
      totalGenerations: 0,
      totalTokens: 0,
      totalTime: 0,
      errorCount: 0
    })

    return {
      ...stats,
      avgTimePerGeneration: stats.totalTime / stats.totalGenerations,
      avgTokensPerGeneration: stats.totalTokens / stats.totalGenerations,
      errorRate: stats.errorCount / stats.totalGenerations,
      costEstimate: stats.totalTokens * 0.0001 // OpenAI pricing estimate
    }
  }
}

interface VectorIndexStats {
  tableName: string
  columnName: string
  indexType: string
  indexSize: string
  vectorCount: number
  averageQueryTime: number
  indexParameters: any
}

interface VectorQueryStats {
  queryType: string
  similarityThreshold: number
  vectorDimension: number
  queryTimeMs: number
  resultCount: number
  indexUsed: boolean
  createdAt: string
}

interface EmbeddingStats {
  totalGenerations: number
  totalTokens: number
  totalTime: number
  errorCount: number
  avgTimePerGeneration: number
  avgTokensPerGeneration: number
  errorRate: number
  costEstimate: number
}

Application Performance Monitoring

Real-time Performance Tracking

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
class ApplicationMonitor {
  private metrics: Map<string, MetricData> = new Map()
  private readonly maxMetrics = 10000

  // Track custom metrics
  recordMetric(name: string, value: number, tags: Record<string, string> = {}) {
    const key = `${name}:${JSON.stringify(tags)}`
    const now = Date.now()

    if (!this.metrics.has(key)) {
      this.metrics.set(key, {
        name,
        values: [],
        tags,
        lastUpdated: now
      })
    }

    const metric = this.metrics.get(key)!
    metric.values.push({ value, timestamp: now })
    metric.lastUpdated = now

    // Keep only recent values
    if (metric.values.length > 1000) {
      metric.values = metric.values.slice(-500)
    }

    // Clean up old metrics
    if (this.metrics.size > this.maxMetrics) {
      this.cleanupOldMetrics()
    }
  }

  // Track API response times
  async trackAPICall<T>(
    endpoint: string,
    operation: () => Promise<T>,
    tags: Record<string, string> = {}
  ): Promise<T> {
    const startTime = performance.now()
    let error: Error | null = null

    try {
      const result = await operation()
      return result
    } catch (e) {
      error = e as Error
      throw e
    } finally {
      const duration = performance.now() - startTime
      
      this.recordMetric('api.response_time', duration, {
        endpoint,
        status: error ? 'error' : 'success',
        ...tags
      })

      if (error) {
        this.recordMetric('api.error_count', 1, {
          endpoint,
          error_type: error.constructor.name,
          ...tags
        })
      }
    }
  }

  // Monitor real-time connection health
  monitorRealtimeConnection(channel: string) {
    let connectionStartTime = Date.now()
    let messageCount = 0
    let lastMessageTime = Date.now()

    return {
      onConnect: () => {
        connectionStartTime = Date.now()
        this.recordMetric('realtime.connection', 1, { channel, event: 'connect' })
      },

      onDisconnect: () => {
        const connectionDuration = Date.now() - connectionStartTime
        this.recordMetric('realtime.connection_duration', connectionDuration, { channel })
        this.recordMetric('realtime.connection', -1, { channel, event: 'disconnect' })
      },

      onMessage: (payload: any) => {
        messageCount++
        lastMessageTime = Date.now()
        this.recordMetric('realtime.message_count', 1, { 
          channel, 
          event_type: payload.eventType || 'unknown' 
        })
      },

      onError: (error: Error) => {
        this.recordMetric('realtime.error_count', 1, { 
          channel, 
          error_type: error.constructor.name 
        })
      },

      getStats: () => ({
        connectionDuration: Date.now() - connectionStartTime,
        messageCount,
        timeSinceLastMessage: Date.now() - lastMessageTime
      })
    }
  }

  // Get metric summaries
  getMetricSummary(name: string, timeRange: number = 3600000): MetricSummary {
    const cutoffTime = Date.now() - timeRange
    const matchingMetrics = Array.from(this.metrics.values())
      .filter(metric => metric.name === name)

    const allValues = matchingMetrics
      .flatMap(metric => metric.values)
      .filter(value => value.timestamp > cutoffTime)
      .sort((a, b) => a.timestamp - b.timestamp)

    if (allValues.length === 0) {
      return { name, count: 0, min: 0, max: 0, avg: 0, sum: 0 }
    }

    const values = allValues.map(v => v.value)
    const sum = values.reduce((acc, val) => acc + val, 0)

    return {
      name,
      count: values.length,
      min: Math.min(...values),
      max: Math.max(...values),
      avg: sum / values.length,
      sum,
      p50: this.percentile(values, 0.5),
      p95: this.percentile(values, 0.95),
      p99: this.percentile(values, 0.99)
    }
  }

  private percentile(values: number[], percentile: number): number {
    const sorted = values.slice().sort((a, b) => a - b)
    const index = Math.ceil(sorted.length * percentile) - 1
    return sorted[index] || 0
  }

  private cleanupOldMetrics() {
    const cutoffTime = Date.now() - 3600000 // 1 hour
    const keysToDelete = []

    for (const [key, metric] of this.metrics) {
      if (metric.lastUpdated < cutoffTime) {
        keysToDelete.push(key)
      }
    }

    keysToDelete.forEach(key => this.metrics.delete(key))
  }
}

interface MetricData {
  name: string
  values: Array<{ value: number; timestamp: number }>
  tags: Record<string, string>
  lastUpdated: number
}

interface MetricSummary {
  name: string
  count: number
  min: number
  max: number
  avg: number
  sum: number
  p50?: number
  p95?: number
  p99?: number
}

Error Tracking and Logging

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
class ErrorTracker {
  private errorBuffer: ErrorEvent[] = []
  private readonly maxErrors = 1000

  captureError(
    error: Error,
    context: ErrorContext = {},
    severity: 'low' | 'medium' | 'high' | 'critical' = 'medium'
  ) {
    const errorEvent: ErrorEvent = {
      id: crypto.randomUUID(),
      message: error.message,
      stack: error.stack,
      name: error.name,
      context,
      severity,
      timestamp: new Date().toISOString(),
      userAgent: typeof navigator !== 'undefined' ? navigator.userAgent : 'server',
      url: typeof window !== 'undefined' ? window.location.href : 'server'
    }

    this.errorBuffer.push(errorEvent)

    // Keep buffer size manageable
    if (this.errorBuffer.length > this.maxErrors) {
      this.errorBuffer = this.errorBuffer.slice(-this.maxErrors / 2)
    }

    // Send to external error tracking service
    this.sendToErrorService(errorEvent)

    // Log critical errors immediately
    if (severity === 'critical') {
      this.sendImmediateAlert(errorEvent)
    }
  }

  captureException(exception: unknown, context: ErrorContext = {}) {
    const error = exception instanceof Error 
      ? exception 
      : new Error(String(exception))
    
    this.captureError(error, context, 'high')
  }

  // Capture performance issues
  capturePerformanceIssue(
    operation: string,
    duration: number,
    threshold: number,
    context: ErrorContext = {}
  ) {
    if (duration > threshold) {
      const error = new Error(
        `Performance threshold exceeded: ${operation} took ${duration}ms (threshold: ${threshold}ms)`
      )
      
      this.captureError(error, {
        ...context,
        operation,
        duration,
        threshold,
        type: 'performance'
      }, 'medium')
    }
  }

  // Get error statistics
  getErrorStats(timeRange: number = 3600000): ErrorStats {
    const cutoffTime = Date.now() - timeRange
    const recentErrors = this.errorBuffer.filter(
      error => Date.parse(error.timestamp) > cutoffTime
    )

    const errorsByType = recentErrors.reduce((acc, error) => {
      acc[error.name] = (acc[error.name] || 0) + 1
      return acc
    }, {} as Record<string, number>)

    const errorsBySeverity = recentErrors.reduce((acc, error) => {
      acc[error.severity] = (acc[error.severity] || 0) + 1
      return acc
    }, {} as Record<string, number>)

    return {
      totalErrors: recentErrors.length,
      errorsByType,
      errorsBySeverity,
      errorRate: recentErrors.length / (timeRange / 1000), // errors per second
      topErrors: Object.entries(errorsByType)
        .sort(([,a], [,b]) => b - a)
        .slice(0, 10)
        .map(([type, count]) => ({ type, count }))
    }
  }

  private async sendToErrorService(errorEvent: ErrorEvent) {
    try {
      // Send to Sentry, Bugsnag, or similar service
      await fetch('/api/errors', {
        method: 'POST',
        headers: { 'Content-Type': 'application/json' },
        body: JSON.stringify(errorEvent)
      })
    } catch (e) {
      console.error('Failed to send error to tracking service:', e)
    }
  }

  private async sendImmediateAlert(errorEvent: ErrorEvent) {
    try {
      // Send to alerting system (Slack, PagerDuty, etc.)
      await fetch('/api/alerts/critical', {
        method: 'POST',
        headers: { 'Content-Type': 'application/json' },
        body: JSON.stringify({
          title: `Critical Error: ${errorEvent.name}`,
          message: errorEvent.message,
          context: errorEvent.context,
          timestamp: errorEvent.timestamp
        })
      })
    } catch (e) {
      console.error('Failed to send critical alert:', e)
    }
  }
}

interface ErrorEvent {
  id: string
  message: string
  stack?: string
  name: string
  context: ErrorContext
  severity: string
  timestamp: string
  userAgent: string
  url: string
}

interface ErrorContext {
  userId?: string
  organizationId?: string
  operation?: string
  duration?: number
  threshold?: number
  type?: string
  [key: string]: any
}

interface ErrorStats {
  totalErrors: number
  errorsByType: Record<string, number>
  errorsBySeverity: Record<string, number>
  errorRate: number
  topErrors: Array<{ type: string; count: number }>
}

Infrastructure Monitoring

System Resource Monitoring

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
class InfrastructureMonitor {
  async getSystemMetrics(): Promise<SystemMetrics> {
    // These would typically come from your hosting platform API
    const metrics = await this.fetchSystemMetrics()
    
    return {
      cpu: {
        usage: metrics.cpu_usage_percent,
        load_1m: metrics.load_1m,
        load_5m: metrics.load_5m,
        load_15m: metrics.load_15m
      },
      memory: {
        total: metrics.memory_total_bytes,
        used: metrics.memory_used_bytes,
        available: metrics.memory_available_bytes,
        usage_percent: (metrics.memory_used_bytes / metrics.memory_total_bytes) * 100
      },
      disk: {
        total: metrics.disk_total_bytes,
        used: metrics.disk_used_bytes,
        available: metrics.disk_available_bytes,
        usage_percent: (metrics.disk_used_bytes / metrics.disk_total_bytes) * 100
      },
      network: {
        bytes_in: metrics.network_bytes_in,
        bytes_out: metrics.network_bytes_out,
        packets_in: metrics.network_packets_in,
        packets_out: metrics.network_packets_out
      }
    }
  }

  async monitorSupabaseMetrics(): Promise<SupabaseMetrics> {
    // Use Supabase API to get service metrics
    const response = await fetch(`${process.env.SUPABASE_URL}/rest/v1/rpc/get_metrics`, {
      headers: {
        'Authorization': `Bearer ${process.env.SUPABASE_SERVICE_ROLE_KEY}`,
        'apikey': process.env.SUPABASE_SERVICE_ROLE_KEY!
      }
    })

    const data = await response.json()
    
    return {
      database: {
        connections_active: data.db_connections_active,
        connections_max: data.db_connections_max,
        queries_per_second: data.db_queries_per_second,
        cache_hit_rate: data.db_cache_hit_rate,
        replication_lag: data.db_replication_lag
      },
      auth: {
        active_users: data.auth_active_users,
        sign_ins_per_hour: data.auth_sign_ins_per_hour,
        token_refresh_rate: data.auth_token_refresh_rate
      },
      storage: {
        total_files: data.storage_total_files,
        total_size_bytes: data.storage_total_size_bytes,
        bandwidth_usage: data.storage_bandwidth_usage
      },
      realtime: {
        active_connections: data.realtime_active_connections,
        messages_per_second: data.realtime_messages_per_second,
        channels_active: data.realtime_channels_active
      },
      edge_functions: {
        invocations_per_minute: data.functions_invocations_per_minute,
        average_duration_ms: data.functions_avg_duration_ms,
        error_rate: data.functions_error_rate
      }
    }
  }

  private async fetchSystemMetrics(): Promise<any> {
    // Mock implementation - replace with actual system metrics API
    return {
      cpu_usage_percent: Math.random() * 100,
      load_1m: Math.random() * 4,
      load_5m: Math.random() * 4,
      load_15m: Math.random() * 4,
      memory_total_bytes: 8 * 1024 * 1024 * 1024,
      memory_used_bytes: Math.random() * 8 * 1024 * 1024 * 1024,
      memory_available_bytes: 8 * 1024 * 1024 * 1024 - Math.random() * 8 * 1024 * 1024 * 1024,
      disk_total_bytes: 100 * 1024 * 1024 * 1024,
      disk_used_bytes: Math.random() * 100 * 1024 * 1024 * 1024,
      disk_available_bytes: 100 * 1024 * 1024 * 1024 - Math.random() * 100 * 1024 * 1024 * 1024,
      network_bytes_in: Math.random() * 1000000,
      network_bytes_out: Math.random() * 1000000,
      network_packets_in: Math.random() * 10000,
      network_packets_out: Math.random() * 10000
    }
  }
}

interface SystemMetrics {
  cpu: {
    usage: number
    load_1m: number
    load_5m: number
    load_15m: number
  }
  memory: {
    total: number
    used: number
    available: number
    usage_percent: number
  }
  disk: {
    total: number
    used: number
    available: number
    usage_percent: number
  }
  network: {
    bytes_in: number
    bytes_out: number
    packets_in: number
    packets_out: number
  }
}

interface SupabaseMetrics {
  database: {
    connections_active: number
    connections_max: number
    queries_per_second: number
    cache_hit_rate: number
    replication_lag: number
  }
  auth: {
    active_users: number
    sign_ins_per_hour: number
    token_refresh_rate: number
  }
  storage: {
    total_files: number
    total_size_bytes: number
    bandwidth_usage: number
  }
  realtime: {
    active_connections: number
    messages_per_second: number
    channels_active: number
  }
  edge_functions: {
    invocations_per_minute: number
    average_duration_ms: number
    error_rate: number
  }
}

Cost Monitoring

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
class CostMonitor {
  async getSupabaseCosts(): Promise<CostBreakdown> {
    // Fetch usage data from Supabase API
    const usage = await this.getUsageData()
    
    return {
      database: this.calculateDatabaseCosts(usage.database),
      auth: this.calculateAuthCosts(usage.auth),
      storage: this.calculateStorageCosts(usage.storage),
      bandwidth: this.calculateBandwidthCosts(usage.bandwidth),
      edge_functions: this.calculateEdgeFunctionCosts(usage.edge_functions),
      total: 0 // Will be calculated
    }
  }

  private calculateDatabaseCosts(usage: any): number {
    // Supabase pricing tiers
    const freeLimit = 500 * 1024 * 1024 // 500MB
    const proPrice = 25 // $25/month for Pro
    
    if (usage.size_bytes <= freeLimit) {
      return 0
    }
    
    return proPrice + Math.max(0, (usage.size_bytes - 8 * 1024 * 1024 * 1024)) / (1024 * 1024 * 1024) * 0.125
  }

  private calculateAuthCosts(usage: any): number {
    const freeMAU = 50000
    const pricePerMAU = 0.00325
    
    return Math.max(0, usage.monthly_active_users - freeMAU) * pricePerMAU
  }

  private calculateStorageCosts(usage: any): number {
    const freeStorage = 1 * 1024 * 1024 * 1024 // 1GB
    const pricePerGB = 0.021
    
    const billableStorage = Math.max(0, usage.storage_bytes - freeStorage)
    return (billableStorage / (1024 * 1024 * 1024)) * pricePerGB
  }

  private calculateBandwidthCosts(usage: any): number {
    const freeBandwidth = 2 * 1024 * 1024 * 1024 // 2GB
    const pricePerGB = 0.09
    
    const billableBandwidth = Math.max(0, usage.egress_bytes - freeBandwidth)
    return (billableBandwidth / (1024 * 1024 * 1024)) * pricePerGB
  }

  private calculateEdgeFunctionCosts(usage: any): number {
    const freeInvocations = 500000
    const pricePerMillion = 2
    
    const billableInvocations = Math.max(0, usage.invocations - freeInvocations)
    return (billableInvocations / 1000000) * pricePerMillion
  }

  private async getUsageData(): Promise<any> {
    // Mock usage data - replace with actual Supabase API calls
    return {
      database: {
        size_bytes: Math.random() * 10 * 1024 * 1024 * 1024,
        queries: Math.random() * 1000000
      },
      auth: {
        monthly_active_users: Math.random() * 100000
      },
      storage: {
        storage_bytes: Math.random() * 5 * 1024 * 1024 * 1024
      },
      bandwidth: {
        egress_bytes: Math.random() * 10 * 1024 * 1024 * 1024
      },
      edge_functions: {
        invocations: Math.random() * 2000000
      }
    }
  }

  async generateCostAlert(threshold: number): Promise<void> {
    const costs = await this.getSupabaseCosts()
    
    if (costs.total > threshold) {
      await this.sendCostAlert({
        currentCost: costs.total,
        threshold,
        breakdown: costs,
        projectedMonthlyCost: costs.total * 30 // Rough projection
      })
    }
  }

  private async sendCostAlert(alert: CostAlert): Promise<void> {
    // Send alert via email, Slack, etc.
    console.log('Cost alert:', alert)
  }
}

interface CostBreakdown {
  database: number
  auth: number
  storage: number
  bandwidth: number
  edge_functions: number
  total: number
}

interface CostAlert {
  currentCost: number
  threshold: number
  breakdown: CostBreakdown
  projectedMonthlyCost: number
}

Alerting and Notifications

Smart Alerting System

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
class AlertingSystem {
  private alertRules: AlertRule[] = []
  private alertHistory: AlertEvent[] = []
  private suppressionList: Map<string, number> = new Map()

  addAlertRule(rule: AlertRule) {
    this.alertRules.push(rule)
  }

  async evaluateAlerts(metrics: Record<string, number>) {
    for (const rule of this.alertRules) {
      const shouldAlert = await this.evaluateRule(rule, metrics)
      
      if (shouldAlert && !this.isSuppressed(rule.id)) {
        await this.triggerAlert(rule, metrics)
        this.suppressAlert(rule.id, rule.suppressionWindow || 300000) // 5 min default
      }
    }
  }

  private async evaluateRule(rule: AlertRule, metrics: Record<string, number>): Promise<boolean> {
    const value = metrics[rule.metric]
    if (value === undefined) return false

    switch (rule.operator) {
      case '>':
        return value > rule.threshold
      case '<':
        return value < rule.threshold
      case '>=':
        return value >= rule.threshold
      case '<=':
        return value <= rule.threshold
      case '==':
        return value === rule.threshold
      default:
        return false
    }
  }

  private async triggerAlert(rule: AlertRule, metrics: Record<string, number>) {
    const alertEvent: AlertEvent = {
      id: crypto.randomUUID(),
      ruleId: rule.id,
      title: rule.title,
      message: this.formatAlertMessage(rule, metrics),
      severity: rule.severity,
      timestamp: new Date().toISOString(),
      metrics,
      resolved: false
    }

    this.alertHistory.push(alertEvent)

    // Send notifications
    for (const channel of rule.notificationChannels) {
      await this.sendNotification(channel, alertEvent)
    }

    // Store in database for dashboard
    await this.storeAlert(alertEvent)
  }

  private formatAlertMessage(rule: AlertRule, metrics: Record<string, number>): string {
    return rule.message
      .replace(/\{(\w+)\}/g, (match, key) => {
        return metrics[key]?.toString() || match
      })
  }

  private isSuppressed(ruleId: string): boolean {
    const suppressedUntil = this.suppressionList.get(ruleId)
    return suppressedUntil ? Date.now() < suppressedUntil : false
  }

  private suppressAlert(ruleId: string, duration: number) {
    this.suppressionList.set(ruleId, Date.now() + duration)
  }

  private async sendNotification(channel: NotificationChannel, alert: AlertEvent) {
    switch (channel.type) {
      case 'email':
        await this.sendEmailNotification(channel, alert)
        break
      case 'slack':
        await this.sendSlackNotification(channel, alert)
        break
      case 'webhook':
        await this.sendWebhookNotification(channel, alert)
        break
      case 'pagerduty':
        await this.sendPagerDutyNotification(channel, alert)
        break
    }
  }

  private async sendEmailNotification(channel: NotificationChannel, alert: AlertEvent) {
    // Email notification implementation
    console.log(`Email alert to ${channel.address}:`, alert.title)
  }

  private async sendSlackNotification(channel: NotificationChannel, alert: AlertEvent) {
    const webhook = channel.webhook!
    const payload = {
      text: alert.title,
      attachments: [{
        color: this.getSeverityColor(alert.severity),
        fields: [{
          title: 'Message',
          value: alert.message,
          short: false
        }, {
          title: 'Severity',
          value: alert.severity,
          short: true
        }, {
          title: 'Time',
          value: alert.timestamp,
          short: true
        }]
      }]
    }

    await fetch(webhook, {
      method: 'POST',
      headers: { 'Content-Type': 'application/json' },
      body: JSON.stringify(payload)
    })
  }

  private async sendWebhookNotification(channel: NotificationChannel, alert: AlertEvent) {
    await fetch(channel.webhook!, {
      method: 'POST',
      headers: { 'Content-Type': 'application/json' },
      body: JSON.stringify(alert)
    })
  }

  private async sendPagerDutyNotification(channel: NotificationChannel, alert: AlertEvent) {
    // PagerDuty API integration
    const payload = {
      routing_key: channel.apiKey,
      event_action: 'trigger',
      payload: {
        summary: alert.title,
        source: 'AIMatrix Monitoring',
        severity: alert.severity,
        custom_details: {
          message: alert.message,
          metrics: alert.metrics
        }
      }
    }

    await fetch('https://events.pagerduty.com/v2/enqueue', {
      method: 'POST',
      headers: { 'Content-Type': 'application/json' },
      body: JSON.stringify(payload)
    })
  }

  private getSeverityColor(severity: string): string {
    const colors = {
      low: '#36a64f',
      medium: '#ffb347',
      high: '#ff6b6b',
      critical: '#dc143c'
    }
    return colors[severity] || '#808080'
  }

  private async storeAlert(alert: AlertEvent) {
    await supabase
      .from('alert_events')
      .insert(alert)
  }

  // Resolve alerts
  async resolveAlert(alertId: string, resolvedBy: string, notes?: string) {
    const alert = this.alertHistory.find(a => a.id === alertId)
    if (alert) {
      alert.resolved = true
      alert.resolvedAt = new Date().toISOString()
      alert.resolvedBy = resolvedBy
      alert.resolveNotes = notes

      await supabase
        .from('alert_events')
        .update({
          resolved: true,
          resolved_at: alert.resolvedAt,
          resolved_by: resolvedBy,
          resolve_notes: notes
        })
        .eq('id', alertId)
    }
  }
}

interface AlertRule {
  id: string
  title: string
  message: string
  metric: string
  operator: '>' | '<' | '>=' | '<=' | '=='
  threshold: number
  severity: 'low' | 'medium' | 'high' | 'critical'
  notificationChannels: NotificationChannel[]
  suppressionWindow?: number
}

interface NotificationChannel {
  type: 'email' | 'slack' | 'webhook' | 'pagerduty'
  address?: string
  webhook?: string
  apiKey?: string
}

interface AlertEvent {
  id: string
  ruleId: string
  title: string
  message: string
  severity: string
  timestamp: string
  metrics: Record<string, number>
  resolved: boolean
  resolvedAt?: string
  resolvedBy?: string
  resolveNotes?: string
}

Dashboard and Visualization

Real-time Dashboard

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
class MonitoringDashboard {
  private updateInterval: number = 30000 // 30 seconds
  private charts: Map<string, Chart> = new Map()

  async initializeDashboard() {
    // Initialize metric collection
    await this.setupMetricCollection()
    
    // Create dashboard widgets
    this.createCPUChart()
    this.createMemoryChart()
    this.createDatabaseChart()
    this.createErrorRateChart()
    this.createRealtimeChart()
    
    // Start real-time updates
    this.startRealtimeUpdates()
  }

  private async setupMetricCollection() {
    // Set up metric collectors
    setInterval(async () => {
      const metrics = await this.collectAllMetrics()
      this.updateCharts(metrics)
    }, this.updateInterval)
  }

  private async collectAllMetrics(): Promise<DashboardMetrics> {
    const [
      systemMetrics,
      supabaseMetrics,
      appMetrics,
      errorStats
    ] = await Promise.all([
      new InfrastructureMonitor().getSystemMetrics(),
      new InfrastructureMonitor().monitorSupabaseMetrics(),
      new ApplicationMonitor().getMetricSummary('api.response_time'),
      new ErrorTracker().getErrorStats()
    ])

    return {
      system: systemMetrics,
      supabase: supabaseMetrics,
      application: appMetrics,
      errors: errorStats,
      timestamp: Date.now()
    }
  }

  private createCPUChart() {
    const chart = new Chart('cpu-chart', {
      type: 'line',
      data: {
        labels: [],
        datasets: [{
          label: 'CPU Usage %',
          data: [],
          borderColor: '#3b82f6',
          backgroundColor: 'rgba(59, 130, 246, 0.1)',
          tension: 0.4
        }]
      },
      options: {
        responsive: true,
        scales: {
          y: {
            beginAtZero: true,
            max: 100
          }
        },
        plugins: {
          legend: {
            display: true
          }
        }
      }
    })
    
    this.charts.set('cpu', chart)
  }

  private createDatabaseChart() {
    const chart = new Chart('database-chart', {
      type: 'doughnut',
      data: {
        labels: ['Active Connections', 'Available Connections'],
        datasets: [{
          data: [0, 100],
          backgroundColor: ['#ef4444', '#10b981'],
          borderWidth: 0
        }]
      },
      options: {
        responsive: true,
        plugins: {
          legend: {
            position: 'bottom'
          }
        }
      }
    })
    
    this.charts.set('database', chart)
  }

  private updateCharts(metrics: DashboardMetrics) {
    // Update CPU chart
    const cpuChart = this.charts.get('cpu')
    if (cpuChart) {
      const now = new Date().toLocaleTimeString()
      cpuChart.data.labels?.push(now)
      cpuChart.data.datasets[0].data.push(metrics.system.cpu.usage)
      
      // Keep only last 20 data points
      if (cpuChart.data.labels!.length > 20) {
        cpuChart.data.labels?.shift()
        cpuChart.data.datasets[0].data.shift()
      }
      
      cpuChart.update('none')
    }

    // Update database chart
    const dbChart = this.charts.get('database')
    if (dbChart) {
      const active = metrics.supabase.database.connections_active
      const max = metrics.supabase.database.connections_max
      
      dbChart.data.datasets[0].data = [active, max - active]
      dbChart.update('none')
    }
  }

  private startRealtimeUpdates() {
    // WebSocket connection for real-time updates
    const ws = new WebSocket('ws://localhost:3001/metrics')
    
    ws.onmessage = (event) => {
      const metrics = JSON.parse(event.data)
      this.updateCharts(metrics)
    }

    ws.onclose = () => {
      // Reconnect after 5 seconds
      setTimeout(() => this.startRealtimeUpdates(), 5000)
    }
  }

  // Export dashboard data
  async exportDashboardData(format: 'json' | 'csv' = 'json'): Promise<string> {
    const metrics = await this.collectAllMetrics()
    
    if (format === 'json') {
      return JSON.stringify(metrics, null, 2)
    } else {
      return this.convertToCSV(metrics)
    }
  }

  private convertToCSV(metrics: DashboardMetrics): string {
    const headers = ['timestamp', 'cpu_usage', 'memory_usage', 'db_connections', 'error_count']
    const row = [
      new Date(metrics.timestamp).toISOString(),
      metrics.system.cpu.usage,
      metrics.system.memory.usage_percent,
      metrics.supabase.database.connections_active,
      metrics.errors.totalErrors
    ]
    
    return [headers.join(','), row.join(',')].join('\n')
  }
}

interface DashboardMetrics {
  system: SystemMetrics
  supabase: SupabaseMetrics
  application: MetricSummary
  errors: ErrorStats
  timestamp: number
}

Performance Optimization Recommendations

Automated Performance Tuning

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
class PerformanceOptimizer {
  async analyzePerformance(): Promise<OptimizationRecommendation[]> {
    const recommendations: OptimizationRecommendation[] = []

    // Analyze query performance
    const slowQueries = await this.findSlowQueries()
    recommendations.push(...this.generateQueryOptimizations(slowQueries))

    // Analyze index usage
    const indexStats = await this.analyzeIndexUsage()
    recommendations.push(...this.generateIndexOptimizations(indexStats))

    // Analyze vector performance
    const vectorStats = await this.analyzeVectorPerformance()
    recommendations.push(...this.generateVectorOptimizations(vectorStats))

    // Analyze real-time performance
    const realtimeStats = await this.analyzeRealtimePerformance()
    recommendations.push(...this.generateRealtimeOptimizations(realtimeStats))

    return recommendations.sort((a, b) => b.impact - a.impact)
  }

  private async findSlowQueries(): Promise<QueryAnalysis[]> {
    const { data } = await supabase
      .from('slow_queries_summary')
      .select('*')
      .gte('avg_execution_time', 1000) // > 1 second
      .order('avg_execution_time', { ascending: false })
      .limit(20)

    return data || []
  }

  private generateQueryOptimizations(queries: QueryAnalysis[]): OptimizationRecommendation[] {
    return queries.map(query => ({
      type: 'query',
      title: `Optimize slow query: ${query.query_preview}`,
      description: `Query takes ${query.avg_execution_time}ms on average`,
      impact: Math.min(query.avg_execution_time / 100, 10),
      effort: this.estimateQueryOptimizationEffort(query),
      actions: this.generateQueryActions(query)
    }))
  }

  private generateQueryActions(query: QueryAnalysis): string[] {
    const actions = []
    
    if (query.avg_execution_time > 5000) {
      actions.push('Consider breaking into smaller queries')
    }
    
    if (query.query_preview.includes('SELECT *')) {
      actions.push('Select only needed columns')
    }
    
    if (query.query_preview.includes('JOIN') && !query.query_preview.includes('INDEX')) {
      actions.push('Add indexes for JOIN conditions')
    }
    
    if (query.occurrence_count > 100) {
      actions.push('Consider caching results')
    }
    
    return actions
  }

  private async analyzeVectorPerformance(): Promise<VectorAnalysis[]> {
    const monitor = new VectorDBMonitor()
    const stats = await monitor.getVectorIndexStats()
    
    return stats.map(stat => ({
      tableName: stat.tableName,
      avgQueryTime: stat.averageQueryTime,
      vectorCount: stat.vectorCount,
      indexType: stat.indexType,
      needsOptimization: stat.averageQueryTime > 100 || stat.vectorCount > 100000
    }))
  }

  private generateVectorOptimizations(analyses: VectorAnalysis[]): OptimizationRecommendation[] {
    return analyses
      .filter(analysis => analysis.needsOptimization)
      .map(analysis => ({
        type: 'vector',
        title: `Optimize vector index for ${analysis.tableName}`,
        description: `Vector queries taking ${analysis.avgQueryTime}ms with ${analysis.vectorCount} vectors`,
        impact: Math.min(analysis.avgQueryTime / 50, 10),
        effort: analysis.vectorCount > 1000000 ? 8 : 5,
        actions: [
          analysis.indexType === 'ivfflat' && analysis.vectorCount > 1000000 
            ? 'Consider switching to HNSW index'
            : 'Tune index parameters',
          'Consider partitioning by metadata',
          'Implement result caching for common queries'
        ]
      }))
  }

  async applyOptimization(recommendation: OptimizationRecommendation): Promise<boolean> {
    try {
      switch (recommendation.type) {
        case 'query':
          return await this.applyQueryOptimization(recommendation)
        case 'index':
          return await this.applyIndexOptimization(recommendation)
        case 'vector':
          return await this.applyVectorOptimization(recommendation)
        default:
          return false
      }
    } catch (error) {
      console.error(`Failed to apply optimization: ${error.message}`)
      return false
    }
  }

  private async applyQueryOptimization(recommendation: OptimizationRecommendation): Promise<boolean> {
    // Implementation would depend on specific optimization
    console.log(`Applying query optimization: ${recommendation.title}`)
    return true
  }

  private estimateQueryOptimizationEffort(query: QueryAnalysis): number {
    let effort = 1
    
    if (query.query_preview.includes('JOIN')) effort += 2
    if (query.query_preview.includes('SUBQUERY')) effort += 3
    if (query.occurrence_count > 1000) effort += 1
    
    return Math.min(effort, 10)
  }
}

interface OptimizationRecommendation {
  type: 'query' | 'index' | 'vector' | 'realtime'
  title: string
  description: string
  impact: number // 1-10, higher = more impact
  effort: number // 1-10, higher = more effort
  actions: string[]
}

interface QueryAnalysis {
  query_preview: string
  avg_execution_time: number
  occurrence_count: number
  query_hash: string
}

interface VectorAnalysis {
  tableName: string
  avgQueryTime: number
  vectorCount: number
  indexType: string
  needsOptimization: boolean
}

Conclusion

With comprehensive monitoring and observability in place, you now have:

  1. Real-time Performance Monitoring - Track database, application, and infrastructure metrics
  2. Error Tracking and Alerting - Capture and alert on errors and performance issues
  3. Cost Monitoring - Track and optimize Supabase usage costs
  4. Automated Performance Optimization - AI-powered recommendations for performance improvements
  5. Interactive Dashboards - Visualize system health and performance trends

Your AIMatrix application is now equipped with production-grade monitoring capabilities that will help you maintain high availability, optimize performance, and control costs as you scale.