System Architecture Design

System Architecture Design

AIMatrix System Architecture

Executive Summary

AIMatrix is a distributed AI orchestration platform built on microservices architecture, designed to handle millions of concurrent AI agents across a global P2P network. This document outlines the complete system design, architectural decisions, and implementation strategies.

System Overview

High-Level Architecture

┌────────────────────────────────────────────────────────────┐
│                     Client Layer                           │
├────────────────────────────────────────────────────────────┤
│  Console (Compose)  │  CLI  │  Web  │  Mobile  │  API     │
└────────────────┬───────────────────────────────────────────┘
                 │
┌────────────────▼───────────────────────────────────────────┐
│                     Gateway Layer                          │
├────────────────────────────────────────────────────────────┤
│  Load Balancer  │  API Gateway  │  WebSocket Gateway       │
│  (Envoy)        │  (Kong)       │  (Custom Kotlin)         │
└────────────────┬───────────────────────────────────────────┘
                 │
┌────────────────▼───────────────────────────────────────────┐
│                  Service Mesh Layer                        │
├────────────────────────────────────────────────────────────┤
│  Service Discovery  │  Circuit Breaker  │  Observability   │
│  (Consul)          │  (Hystrix)       │  (OpenTelemetry)  │
└────────────────┬───────────────────────────────────────────┘
                 │
┌────────────────▼───────────────────────────────────────────┐
│                 Core Services Layer                        │
├────────────────────────────────────────────────────────────┤
│ Agent    │ Model    │ Knowledge │ Workflow │ Integration  │
│ Service  │ Service  │ Service   │ Engine   │ Service      │
│ (Kotlin) │ (Python) │ (Go)      │ (Kotlin) │ (Node.js)    │
└────────────────┬───────────────────────────────────────────┘
                 │
┌────────────────▼───────────────────────────────────────────┐
│                   Data Layer                               │
├────────────────────────────────────────────────────────────┤
│ PostgreSQL │ MongoDB │ Redis │ Pinecone │ Neo4j │ S3      │
│ (OLTP)     │ (Docs)  │ (Cache)│ (Vector) │ (Graph)│ (Blob) │
└────────────────────────────────────────────────────────────┘
                 │
┌────────────────▼───────────────────────────────────────────┐
│                Infrastructure Layer                        │
├────────────────────────────────────────────────────────────┤
│  Kubernetes  │  Docker  │  Terraform  │  Prometheus       │
│  (K8s)       │          │  (IaC)      │  (Monitoring)     │
└────────────────────────────────────────────────────────────┘

Architectural Principles

1. Domain-Driven Design (DDD)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
// Bounded Contexts
sealed class BoundedContext {
    object AgentManagement : BoundedContext()
    object ModelServing : BoundedContext()
    object KnowledgeManagement : BoundedContext()
    object WorkflowOrchestration : BoundedContext()
    object UserManagement : BoundedContext()
    object BillingAndMetering : BoundedContext()
}

// Aggregate Example
class AgentAggregate(
    val id: AgentId,
    val name: String,
    val owner: UserId,
    val capabilities: Set<Capability>,
    val state: AgentState
) {
    fun execute(command: Command): List<Event> {
        return when (command) {
            is StartAgent -> handleStart()
            is StopAgent -> handleStop()
            is UpdateCapabilities -> handleUpdate(command)
        }
    }
}

2. Event-Driven Architecture

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
# Event Bus Configuration
event-bus:
  type: kafka
  topics:
    - agent.created
    - agent.started
    - agent.stopped
    - model.loaded
    - model.inference.completed
    - knowledge.indexed
    - workflow.executed
  
  partitions: 32
  replication-factor: 3
  retention-ms: 604800000  # 7 days

3. CQRS Pattern

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// Command Side
interface AgentCommandService {
    suspend fun createAgent(cmd: CreateAgentCommand): AgentId
    suspend fun updateAgent(cmd: UpdateAgentCommand)
    suspend fun deleteAgent(cmd: DeleteAgentCommand)
}

// Query Side
interface AgentQueryService {
    suspend fun getAgent(id: AgentId): Agent?
    suspend fun searchAgents(criteria: SearchCriteria): List<Agent>
    suspend fun getAgentMetrics(id: AgentId): AgentMetrics
}

// Event Sourcing
class AgentEventStore {
    suspend fun append(events: List<AgentEvent>) {
        events.forEach { event ->
            // Store in event store
            eventStore.append(event)
            // Publish to event bus
            eventBus.publish(event)
        }
    }
}

4. Hexagonal Architecture

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
// Domain Layer (Core)
interface AgentRepository {
    suspend fun save(agent: Agent)
    suspend fun findById(id: AgentId): Agent?
}

// Application Layer
class AgentUseCase(
    private val repository: AgentRepository,
    private val eventBus: EventBus
) {
    suspend fun createAgent(request: CreateAgentRequest) {
        val agent = Agent.create(request)
        repository.save(agent)
        eventBus.publish(AgentCreated(agent))
    }
}

// Infrastructure Layer (Adapters)
class PostgresAgentRepository : AgentRepository {
    override suspend fun save(agent: Agent) {
        // PostgreSQL implementation
    }
}

class MongoAgentRepository : AgentRepository {
    override suspend fun save(agent: Agent) {
        // MongoDB implementation
    }
}

Service Architecture

Agent Service

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// Agent Service Architecture
@Service
class AgentService(
    private val masterAgent: MasterAgent,
    private val agentRegistry: AgentRegistry,
    private val metricsCollector: MetricsCollector
) {
    // Agent Lifecycle Management
    suspend fun createAgent(spec: AgentSpec): Agent {
        // Validate specification
        spec.validate()
        
        // Create agent instance
        val agent = when (spec.type) {
            AgentType.CONVERSATIONAL -> ConversationalAgent(spec)
            AgentType.AUTONOMOUS -> AutonomousAgent(spec)
            AgentType.REACTIVE -> ReactiveAgent(spec)
        }
        
        // Register with Master Agent
        masterAgent.register(agent)
        
        // Start metrics collection
        metricsCollector.track(agent)
        
        return agent
    }
    
    // Agent Execution
    suspend fun executeTask(agentId: String, task: Task): TaskResult {
        val agent = agentRegistry.get(agentId)
        
        return withContext(Dispatchers.IO) {
            // Execute with timeout
            withTimeout(task.timeout) {
                agent.execute(task)
            }
        }
    }
}

Model Service

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Model Service Architecture (Python for ML ecosystem)
from typing import Optional, List, Dict, Any
import asyncio
from dataclasses import dataclass
from abc import ABC, abstractmethod

@dataclass
class ModelSpec:
    name: str
    version: str
    provider: str  # ollama, openai, anthropic, local
    config: Dict[str, Any]

class ModelService:
    def __init__(self):
        self.model_registry = ModelRegistry()
        self.model_cache = ModelCache()
        self.metrics = MetricsCollector()
    
    async def load_model(self, spec: ModelSpec) -> Model:
        """Load model with intelligent caching"""
        # Check cache first
        cached = await self.model_cache.get(spec.cache_key)
        if cached:
            return cached
        
        # Load based on provider
        model = await self._load_by_provider(spec)
        
        # Cache for future use
        await self.model_cache.put(spec.cache_key, model)
        
        return model
    
    async def infer(self, 
                   model_id: str, 
                   input_data: Any,
                   params: Optional[Dict] = None) -> Any:
        """Run inference with automatic batching"""
        model = await self.get_model(model_id)
        
        # Batch if possible
        if model.supports_batching:
            return await self._batch_infer(model, input_data, params)
        else:
            return await model.infer(input_data, params)
    
    async def _batch_infer(self, model, input_data, params):
        """Intelligent batching for efficiency"""
        batch = self.batch_manager.add(model.id, input_data, params)
        
        if batch.is_ready:
            results = await model.batch_infer(batch.items)
            batch.distribute_results(results)
        
        return await batch.get_result_for(input_data)

Knowledge Service

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
// Knowledge Service Architecture (Go for performance)
package knowledge

import (
    "context"
    "encoding/json"
    "github.com/aimatrix/vector"
    "github.com/neo4j/neo4j-go-driver"
)

type KnowledgeService struct {
    vectorDB   *vector.Client
    graphDB    neo4j.Driver
    docStore   DocumentStore
    embedder   Embedder
}

// Document Processing Pipeline
func (ks *KnowledgeService) ProcessDocument(
    ctx context.Context, 
    doc Document,
) (*ProcessedDocument, error) {
    // 1. Extract text and metadata
    extracted, err := ks.extractContent(doc)
    if err != nil {
        return nil, err
    }
    
    // 2. Chunk document
    chunks := ks.chunkDocument(extracted, ChunkConfig{
        Size:    512,
        Overlap: 128,
        Strategy: "semantic",
    })
    
    // 3. Generate embeddings
    embeddings, err := ks.embedder.EmbedBatch(ctx, chunks)
    if err != nil {
        return nil, err
    }
    
    // 4. Store in vector database
    for i, chunk := range chunks {
        ks.vectorDB.Upsert(ctx, &vector.Point{
            ID:       chunk.ID,
            Vector:   embeddings[i],
            Metadata: chunk.Metadata,
        })
    }
    
    // 5. Update knowledge graph
    err = ks.updateKnowledgeGraph(ctx, doc, chunks)
    if err != nil {
        return nil, err
    }
    
    return &ProcessedDocument{
        ID:         doc.ID,
        ChunkCount: len(chunks),
        Status:     "indexed",
    }, nil
}

// RAG Implementation
func (ks *KnowledgeService) RetrieveAugmentedGeneration(
    ctx context.Context,
    query string,
    config RAGConfig,
) (*RAGResponse, error) {
    // 1. Embed query
    queryEmbedding, err := ks.embedder.Embed(ctx, query)
    if err != nil {
        return nil, err
    }
    
    // 2. Vector search
    vectorResults, err := ks.vectorDB.Search(ctx, &vector.SearchRequest{
        Vector: queryEmbedding,
        TopK:   config.TopK,
        Filter: config.Filter,
    })
    
    // 3. Graph traversal for context expansion
    graphContext, err := ks.expandWithGraph(ctx, vectorResults)
    
    // 4. Rerank results
    reranked := ks.rerank(query, append(vectorResults, graphContext...))
    
    // 5. Build augmented context
    augmentedContext := ks.buildContext(reranked, config.MaxTokens)
    
    return &RAGResponse{
        Context:    augmentedContext,
        Sources:    reranked.GetSources(),
        Confidence: reranked.GetConfidence(),
    }, nil
}

Data Architecture

Database Schema Design

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
-- Core Agent Tables
CREATE TABLE agents (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    name VARCHAR(255) NOT NULL,
    type VARCHAR(50) NOT NULL,
    owner_id UUID NOT NULL,
    workspace_id UUID NOT NULL,
    capabilities JSONB NOT NULL DEFAULT '[]',
    config JSONB NOT NULL DEFAULT '{}',
    state VARCHAR(50) NOT NULL DEFAULT 'created',
    created_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
    updated_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
    
    CONSTRAINT fk_owner FOREIGN KEY (owner_id) REFERENCES users(id),
    CONSTRAINT fk_workspace FOREIGN KEY (workspace_id) REFERENCES workspaces(id),
    INDEX idx_agent_owner (owner_id),
    INDEX idx_agent_workspace (workspace_id),
    INDEX idx_agent_state (state)
);

-- Agent Execution History
CREATE TABLE agent_executions (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    agent_id UUID NOT NULL,
    task_id UUID NOT NULL,
    input JSONB NOT NULL,
    output JSONB,
    tokens_used INTEGER,
    execution_time_ms INTEGER,
    status VARCHAR(50) NOT NULL,
    error TEXT,
    started_at TIMESTAMPTZ NOT NULL,
    completed_at TIMESTAMPTZ,
    
    CONSTRAINT fk_agent FOREIGN KEY (agent_id) REFERENCES agents(id),
    INDEX idx_execution_agent (agent_id),
    INDEX idx_execution_status (status),
    INDEX idx_execution_time (started_at DESC)
) PARTITION BY RANGE (started_at);

-- Create monthly partitions
CREATE TABLE agent_executions_2025_01 PARTITION OF agent_executions
    FOR VALUES FROM ('2025-01-01') TO ('2025-02-01');

-- Knowledge Base Tables
CREATE TABLE documents (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    workspace_id UUID NOT NULL,
    source_type VARCHAR(50) NOT NULL, -- file, url, api
    source_url TEXT,
    content_hash VARCHAR(64) NOT NULL,
    metadata JSONB NOT NULL DEFAULT '{}',
    processing_status VARCHAR(50) NOT NULL DEFAULT 'pending',
    chunk_count INTEGER DEFAULT 0,
    vector_ids UUID[] DEFAULT '{}',
    created_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
    processed_at TIMESTAMPTZ,
    
    CONSTRAINT fk_workspace FOREIGN KEY (workspace_id) REFERENCES workspaces(id),
    INDEX idx_doc_workspace (workspace_id),
    INDEX idx_doc_status (processing_status),
    INDEX idx_doc_hash (content_hash)
);

-- Vector Store Metadata (actual vectors in Pinecone/Weaviate)
CREATE TABLE vector_metadata (
    id UUID PRIMARY KEY,
    document_id UUID NOT NULL,
    chunk_index INTEGER NOT NULL,
    chunk_text TEXT NOT NULL,
    embedding_model VARCHAR(100) NOT NULL,
    metadata JSONB NOT NULL DEFAULT '{}',
    created_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
    
    CONSTRAINT fk_document FOREIGN KEY (document_id) REFERENCES documents(id),
    INDEX idx_vector_doc (document_id),
    INDEX idx_vector_created (created_at DESC)
);

-- Workflow Tables
CREATE TABLE workflows (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    workspace_id UUID NOT NULL,
    name VARCHAR(255) NOT NULL,
    description TEXT,
    definition JSONB NOT NULL, -- Workflow DSL
    triggers JSONB NOT NULL DEFAULT '[]',
    is_active BOOLEAN DEFAULT true,
    version INTEGER NOT NULL DEFAULT 1,
    created_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
    updated_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
    
    CONSTRAINT fk_workspace FOREIGN KEY (workspace_id) REFERENCES workspaces(id),
    INDEX idx_workflow_workspace (workspace_id),
    INDEX idx_workflow_active (is_active)
);

-- P2P Compute Network
CREATE TABLE compute_nodes (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    node_id VARCHAR(255) UNIQUE NOT NULL,
    owner_id UUID NOT NULL,
    capabilities JSONB NOT NULL, -- GPU, CPU, RAM specs
    availability JSONB NOT NULL, -- Schedule
    reputation_score DECIMAL(3,2) DEFAULT 0.00,
    total_jobs_completed INTEGER DEFAULT 0,
    total_credits_earned DECIMAL(10,2) DEFAULT 0,
    status VARCHAR(50) NOT NULL DEFAULT 'offline',
    last_heartbeat TIMESTAMPTZ,
    created_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
    
    CONSTRAINT fk_owner FOREIGN KEY (owner_id) REFERENCES users(id),
    INDEX idx_compute_owner (owner_id),
    INDEX idx_compute_status (status),
    INDEX idx_compute_heartbeat (last_heartbeat)
);

-- Job Queue for P2P Network
CREATE TABLE compute_jobs (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    workspace_id UUID NOT NULL,
    job_type VARCHAR(50) NOT NULL,
    requirements JSONB NOT NULL,
    payload JSONB NOT NULL,
    assigned_node_id UUID,
    status VARCHAR(50) NOT NULL DEFAULT 'pending',
    priority INTEGER DEFAULT 5,
    max_retries INTEGER DEFAULT 3,
    retry_count INTEGER DEFAULT 0,
    credits_offered DECIMAL(10,2) NOT NULL,
    created_at TIMESTAMPTZ NOT NULL DEFAULT NOW(),
    assigned_at TIMESTAMPTZ,
    completed_at TIMESTAMPTZ,
    
    CONSTRAINT fk_workspace FOREIGN KEY (workspace_id) REFERENCES workspaces(id),
    CONSTRAINT fk_node FOREIGN KEY (assigned_node_id) REFERENCES compute_nodes(id),
    INDEX idx_job_status (status),
    INDEX idx_job_priority (priority DESC, created_at ASC),
    INDEX idx_job_node (assigned_node_id)
);

NoSQL Schema (MongoDB)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
// Agent Configuration Collection
{
  _id: ObjectId("..."),
  agentId: "uuid",
  version: 1,
  prompts: {
    system: "You are a helpful assistant...",
    examples: [
      { input: "...", output: "..." }
    ]
  },
  tools: [
    {
      name: "web_search",
      description: "Search the web",
      parameters: { ... },
      implementation: "plugin:web_search:v1"
    }
  ],
  memory: {
    type: "conversation",
    maxTokens: 4096,
    summaryStrategy: "progressive"
  },
  modelPreferences: [
    { task: "general", model: "gpt-4" },
    { task: "code", model: "claude-3" },
    { task: "vision", model: "gemini-vision" }
  ],
  createdAt: ISODate("..."),
  updatedAt: ISODate("...")
}

// Conversation History Collection
{
  _id: ObjectId("..."),
  sessionId: "uuid",
  agentId: "uuid",
  userId: "uuid",
  messages: [
    {
      id: "msg_1",
      role: "user",
      content: "Hello",
      timestamp: ISODate("..."),
      metadata: { ... }
    },
    {
      id: "msg_2",
      role: "assistant",
      content: "Hi! How can I help?",
      timestamp: ISODate("..."),
      tokensUsed: 15,
      modelUsed: "gpt-4",
      metadata: { ... }
    }
  ],
  summary: "User greeted the assistant...",
  tags: ["greeting", "general"],
  createdAt: ISODate("..."),
  lastActivityAt: ISODate("...")
}

// Knowledge Graph Nodes (Neo4j Representation in JSON)
{
  _id: ObjectId("..."),
  nodeId: "uuid",
  labels: ["Document", "TechnicalSpec"],
  properties: {
    title: "System Architecture",
    source: "internal",
    confidenceScore: 0.95,
    lastVerified: ISODate("...")
  },
  relationships: [
    {
      type: "REFERENCES",
      targetId: "uuid",
      properties: { weight: 0.8 }
    },
    {
      type: "CONTRADICTS",
      targetId: "uuid",
      properties: { reason: "..." }
    }
  ],
  embeddings: {
    model: "text-embedding-ada-002",
    vector: [0.123, -0.456, ...], // 1536 dimensions
    generatedAt: ISODate("...")
  }
}

Scalability Design

Horizontal Scaling Strategy

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Kubernetes HPA Configuration
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: agent-service-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: agent-service
  minReplicas: 3
  maxReplicas: 100
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 80
  - type: Pods
    pods:
      metric:
        name: agent_queue_depth
      target:
        type: AverageValue
        averageValue: "30"
  behavior:
    scaleUp:
      stabilizationWindowSeconds: 60
      policies:
      - type: Percent
        value: 100
        periodSeconds: 60
    scaleDown:
      stabilizationWindowSeconds: 300
      policies:
      - type: Percent
        value: 50
        periodSeconds: 60

Load Balancing Architecture

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# NGINX Plus Configuration for Smart Load Balancing
upstream agent_service {
    zone agent_service_zone 64k;
    
    # Least connections with health checks
    least_conn;
    
    # Backend servers with weights
    server agent-1.internal:8080 weight=5 max_fails=3 fail_timeout=30s;
    server agent-2.internal:8080 weight=5 max_fails=3 fail_timeout=30s;
    server agent-3.internal:8080 weight=3 max_fails=3 fail_timeout=30s;
    
    # Sticky sessions for WebSocket
    ip_hash;
    
    # Health check
    health_check interval=5s fails=3 passes=2 uri=/health;
}

# Rate limiting per user
limit_req_zone $binary_remote_addr zone=api_limit:10m rate=100r/s;
limit_req_zone $http_x_api_key zone=key_limit:10m rate=1000r/s;

server {
    listen 443 ssl http2;
    server_name api.aimatrix.com;
    
    # SSL configuration
    ssl_certificate /etc/nginx/ssl/aimatrix.crt;
    ssl_certificate_key /etc/nginx/ssl/aimatrix.key;
    ssl_protocols TLSv1.2 TLSv1.3;
    
    # Rate limiting
    limit_req zone=api_limit burst=50 nodelay;
    limit_req zone=key_limit burst=200 nodelay;
    
    # WebSocket support
    location /ws {
        proxy_pass http://agent_service;
        proxy_http_version 1.1;
        proxy_set_header Upgrade $http_upgrade;
        proxy_set_header Connection "upgrade";
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
        proxy_read_timeout 86400;
    }
    
    # API endpoints
    location /api {
        proxy_pass http://agent_service;
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
        proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
        
        # Response caching
        proxy_cache api_cache;
        proxy_cache_valid 200 1m;
        proxy_cache_key "$scheme$request_method$host$request_uri$http_x_api_key";
    }
}

Database Sharding Strategy

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// Sharding Configuration
class ShardingStrategy {
    private val shardCount = 16
    
    fun getShardKey(workspaceId: String): Int {
        return workspaceId.hashCode() % shardCount
    }
    
    fun getConnectionForWorkspace(workspaceId: String): Connection {
        val shardKey = getShardKey(workspaceId)
        return connectionPool.getConnection("shard_$shardKey")
    }
}

// Cross-shard Query Execution
class CrossShardQueryExecutor {
    suspend fun executeQuery(query: String): List<Result> = coroutineScope {
        val results = (0 until shardCount).map { shardId ->
            async {
                connectionPool.getConnection("shard_$shardId").use { conn ->
                    conn.executeQuery(query)
                }
            }
        }.awaitAll()
        
        return@coroutineScope results.flatten()
    }
}

Performance Optimization

Caching Strategy

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
// Multi-tier Caching
class CacheManager {
    private val l1Cache = CaffeineCache(maxSize = 10000) // In-memory
    private val l2Cache = RedisCache() // Distributed
    private val l3Cache = CDNCache() // Edge
    
    suspend fun get(key: String): Any? {
        // L1 Cache (microseconds)
        l1Cache.get(key)?.let { return it }
        
        // L2 Cache (milliseconds)
        l2Cache.get(key)?.let { 
            l1Cache.put(key, it)
            return it 
        }
        
        // L3 Cache (tens of milliseconds)
        l3Cache.get(key)?.let {
            l2Cache.put(key, it)
            l1Cache.put(key, it)
            return it
        }
        
        return null
    }
    
    suspend fun put(key: String, value: Any, ttl: Duration = 1.hours) {
        // Write-through to all levels
        l1Cache.put(key, value, ttl)
        l2Cache.put(key, value, ttl)
        l3Cache.put(key, value, ttl)
    }
}

Query Optimization

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
-- Optimized query with proper indexing
EXPLAIN ANALYZE
WITH active_agents AS (
    SELECT 
        a.id,
        a.name,
        a.capabilities,
        COUNT(ae.id) as execution_count,
        AVG(ae.execution_time_ms) as avg_execution_time,
        SUM(ae.tokens_used) as total_tokens
    FROM agents a
    LEFT JOIN agent_executions ae ON a.id = ae.agent_id
        AND ae.started_at >= NOW() - INTERVAL '24 hours'
    WHERE a.workspace_id = $1
        AND a.state = 'active'
    GROUP BY a.id
),
ranked_agents AS (
    SELECT 
        *,
        ROW_NUMBER() OVER (
            ORDER BY execution_count DESC, avg_execution_time ASC
        ) as rank
    FROM active_agents
)
SELECT * FROM ranked_agents
WHERE rank <= 10;

-- Execution plan shows index scans and hash joins
-- Cost: 125.43..456.78 (actual time=0.045..0.123)

Security Architecture

Zero Trust Security Model

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
// Security Layer Implementation
class SecurityGateway {
    private val authService = AuthenticationService()
    private val authzService = AuthorizationService()
    private val encryptionService = EncryptionService()
    private val auditService = AuditService()
    
    suspend fun processRequest(request: Request): Response {
        // 1. Authentication
        val identity = authService.authenticate(request.token)
            ?: throw UnauthorizedException()
        
        // 2. Authorization
        if (!authzService.authorize(identity, request.resource, request.action)) {
            throw ForbiddenException()
        }
        
        // 3. Decrypt request if needed
        val decryptedPayload = if (request.isEncrypted) {
            encryptionService.decrypt(request.payload, identity.keyId)
        } else {
            request.payload
        }
        
        // 4. Process request
        val response = processSecurely(decryptedPayload)
        
        // 5. Audit
        auditService.log(
            identity = identity,
            action = request.action,
            resource = request.resource,
            result = response.status
        )
        
        // 6. Encrypt response
        return encryptionService.encrypt(response, identity.publicKey)
    }
}

API Security

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# API Gateway Security Configuration (Kong)
plugins:
  - name: rate-limiting
    config:
      minute: 100
      hour: 10000
      policy: redis
      
  - name: jwt
    config:
      key_claim_name: kid
      secret_is_base64: true
      
  - name: ip-restriction
    config:
      whitelist:
        - 10.0.0.0/8
        - 172.16.0.0/12
      
  - name: request-transformer
    config:
      add:
        headers:
          - X-Request-ID:$(uuid)
          - X-Timestamp:$(timestamp)
      
  - name: response-transformer
    config:
      remove:
        headers:
          - Server
          - X-Powered-By

Monitoring & Observability

Metrics Collection

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
// Metrics Implementation
class MetricsCollector {
    private val meterRegistry = PrometheusMeterRegistry(PrometheusConfig.DEFAULT)
    
    // Counter metrics
    val agentExecutions = meterRegistry.counter("agent.executions.total")
    val apiRequests = meterRegistry.counter("api.requests.total")
    
    // Gauge metrics
    val activeAgents = meterRegistry.gauge("agents.active.count", AtomicInteger(0))
    val queueDepth = meterRegistry.gauge("queue.depth", AtomicInteger(0))
    
    // Histogram metrics
    val executionDuration = meterRegistry.timer("agent.execution.duration")
    val tokenUsage = meterRegistry.summary("agent.tokens.used")
    
    // Custom metrics
    fun recordExecution(agentId: String, duration: Duration, tokensUsed: Int) {
        executionDuration.record(duration)
        tokenUsage.record(tokensUsed.toDouble())
        agentExecutions.increment()
        
        // Add tags for detailed analysis
        meterRegistry.counter(
            "agent.executions.by_type",
            "agent_id", agentId,
            "status", "success"
        ).increment()
    }
}

Distributed Tracing

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
// OpenTelemetry Integration
class TracingService {
    private val tracer = OpenTelemetry.getTracer("aimatrix")
    
    suspend fun <T> traceOperation(
        operationName: String,
        attributes: Map<String, String> = emptyMap(),
        block: suspend () -> T
    ): T {
        val span = tracer.spanBuilder(operationName)
            .setSpanKind(SpanKind.INTERNAL)
            .startSpan()
        
        return try {
            attributes.forEach { (key, value) ->
                span.setAttribute(key, value)
            }
            
            span.makeCurrent().use {
                block()
            }
        } catch (e: Exception) {
            span.recordException(e)
            throw e
        } finally {
            span.end()
        }
    }
}

Disaster Recovery

Backup Strategy

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#!/bin/bash
# Automated Backup Script

# Database backups
pg_dump -h $DB_HOST -U $DB_USER -d aimatrix_prod \
    --format=custom --compress=9 \
    > /backups/postgres/aimatrix_$(date +%Y%m%d_%H%M%S).dump

# MongoDB backup
mongodump --uri=$MONGO_URI \
    --archive=/backups/mongo/aimatrix_$(date +%Y%m%d_%H%M%S).archive \
    --gzip

# Vector database export
curl -X POST $PINECONE_API/indexes/aimatrix/backup \
    -H "Api-Key: $PINECONE_KEY" \
    -d '{"destination": "s3://aimatrix-backups/vectors/"}'

# Upload to S3 with versioning
aws s3 sync /backups/ s3://aimatrix-backups/ \
    --storage-class GLACIER_IR \
    --metadata backup-date=$(date +%Y%m%d)

# Cleanup old backups (keep 30 days)
find /backups/ -type f -mtime +30 -delete

Recovery Time Objective (RTO) & Recovery Point Objective (RPO)

Service RTO RPO Strategy
API Gateway 30 seconds 0 Multi-region active-active
Agent Service 2 minutes 1 minute Hot standby with automatic failover
Database (Primary) 5 minutes 30 seconds Synchronous replication
Vector Store 10 minutes 5 minutes Async replication + snapshots
Object Storage 1 minute 0 Multi-region replication
Message Queue 1 minute 0 Clustered with 3x replication

Compliance & Standards

GDPR Compliance

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
// GDPR Implementation
class GDPRComplianceService {
    // Right to be forgotten
    suspend fun deleteUserData(userId: String) {
        transaction {
            // Delete from all tables
            agentRepository.deleteByOwner(userId)
            documentRepository.deleteByOwner(userId)
            executionRepository.deleteByOwner(userId)
            
            // Remove from vector stores
            vectorStore.deleteByMetadata("owner_id", userId)
            
            // Purge from caches
            cacheManager.purgeUser(userId)
            
            // Log deletion for compliance
            auditLog.logDeletion(userId, timestamp = now())
        }
    }
    
    // Data portability
    suspend fun exportUserData(userId: String): UserDataExport {
        return UserDataExport(
            profile = userRepository.findById(userId),
            agents = agentRepository.findByOwner(userId),
            documents = documentRepository.findByOwner(userId),
            executions = executionRepository.findByOwner(userId),
            exportedAt = now()
        )
    }
}

This is a living document and will be updated as the architecture evolves.