Knowledge Pipeline Service - Technical Implementation

Knowledge Pipeline Service - Technical Implementation

The Knowledge Pipeline Service provides enterprise-grade data processing capabilities for ingesting, transforming, and structuring data into actionable knowledge for AI systems.

Service Overview

The Knowledge Pipeline Service orchestrates the complete data-to-knowledge transformation lifecycle, from raw data ingestion through structured knowledge graph construction and vector embeddings generation. It supports real-time streaming and batch processing modes with automatic scaling.

Key Capabilities

  • Real-time Data Processing: Stream processing with Apache Kafka and Apache Flink
  • ETL Pipeline Management: Configurable extraction, transformation, and loading workflows
  • Knowledge Graph Construction: Automated entity extraction and relationship mapping
  • Vector Database Integration: Embeddings generation and similarity search optimization
  • Multi-format Support: Text, documents, APIs, databases, and structured data sources
  • Incremental Updates: Efficient change detection and delta processing

Architecture Design

Core Components

  graph TB
    A[Data Ingestion Layer] --> B[Stream Processing Engine]
    A --> C[Batch Processing Engine] 
    B --> D[Transformation Pipeline]
    C --> D
    D --> E[Knowledge Extraction]
    E --> F[Vector Generation]
    E --> G[Graph Construction]
    F --> H[Vector Database]
    G --> I[Knowledge Graph]
    H --> J[Search & Retrieval API]
    I --> J

System Architecture

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
// Core service architecture
@Service
@Component("knowledgePipelineService")
class KnowledgePipelineService(
    private val dataIngestionService: DataIngestionService,
    private val streamProcessor: StreamProcessor,
    private val batchProcessor: BatchProcessor,
    private val knowledgeExtractor: KnowledgeExtractor,
    private val vectorGenerator: VectorGenerator,
    private val graphBuilder: GraphBuilder,
    private val pipelineOrchestrator: PipelineOrchestrator
) {
    
    suspend fun createPipeline(request: PipelineCreationRequest): PipelineResponse {
        // Validate pipeline configuration
        validatePipelineConfig(request.config)
        
        // Create pipeline instance
        val pipeline = Pipeline(
            id = UUID.randomUUID().toString(),
            name = request.name,
            config = request.config,
            status = PipelineStatus.CREATING
        )
        
        // Deploy pipeline components
        val deployment = pipelineOrchestrator.deployPipeline(pipeline)
        
        // Start data ingestion
        dataIngestionService.startIngestion(
            pipelineId = pipeline.id,
            sources = request.config.dataSources
        )
        
        return PipelineResponse(
            pipelineId = pipeline.id,
            status = pipeline.status,
            endpoints = deployment.endpoints
        )
    }
}

API Specifications

REST API Endpoints

Pipeline Management

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
# OpenAPI Specification
openapi: 3.0.3
info:
  title: Knowledge Pipeline Service API
  version: 1.0.0
  description: Enterprise knowledge processing and pipeline management

paths:
  /api/v1/pipelines:
    post:
      summary: Create knowledge pipeline
      operationId: createPipeline
      requestBody:
        required: true
        content:
          application/json:
            schema:
              $ref: '#/components/schemas/PipelineCreationRequest'
      responses:
        '201':
          description: Pipeline created
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/PipelineResponse'
        '400':
          description: Invalid pipeline configuration
        '429':
          description: Pipeline quota exceeded

    get:
      summary: List pipelines
      parameters:
        - name: status
          in: query
          schema:
            type: string
            enum: [creating, running, stopped, failed, deleted]
        - name: type
          in: query
          schema:
            type: string
            enum: [streaming, batch, hybrid]
        - name: limit
          in: query
          schema:
            type: integer
            default: 50
        - name: offset
          in: query
          schema:
            type: integer
            default: 0
      responses:
        '200':
          description: List of pipelines
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/PipelineList'

  /api/v1/pipelines/{pipelineId}:
    get:
      summary: Get pipeline details
      parameters:
        - name: pipelineId
          in: path
          required: true
          schema:
            type: string
      responses:
        '200':
          description: Pipeline details
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/Pipeline'
        '404':
          description: Pipeline not found

    patch:
      summary: Update pipeline configuration
      parameters:
        - name: pipelineId
          in: path
          required: true
          schema:
            type: string
      requestBody:
        required: true
        content:
          application/json:
            schema:
              $ref: '#/components/schemas/PipelineUpdateRequest'
      responses:
        '200':
          description: Pipeline updated
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/Pipeline'
        '404':
          description: Pipeline not found
        '409':
          description: Cannot update running pipeline

    delete:
      summary: Delete pipeline
      parameters:
        - name: pipelineId
          in: path
          required: true
          schema:
            type: string
      responses:
        '204':
          description: Pipeline deleted
        '404':
          description: Pipeline not found
        '409':
          description: Cannot delete running pipeline

  /api/v1/pipelines/{pipelineId}/start:
    post:
      summary: Start pipeline execution
      parameters:
        - name: pipelineId
          in: path
          required: true
          schema:
            type: string
      responses:
        '202':
          description: Pipeline start initiated
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/PipelineOperationResponse'

  /api/v1/pipelines/{pipelineId}/stop:
    post:
      summary: Stop pipeline execution
      parameters:
        - name: pipelineId
          in: path
          required: true
          schema:
            type: string
      responses:
        '202':
          description: Pipeline stop initiated
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/PipelineOperationResponse'

  /api/v1/pipelines/{pipelineId}/metrics:
    get:
      summary: Get pipeline metrics
      parameters:
        - name: pipelineId
          in: path
          required: true
          schema:
            type: string
        - name: timeRange
          in: query
          schema:
            type: string
            enum: [1h, 6h, 24h, 7d, 30d]
            default: 1h
      responses:
        '200':
          description: Pipeline metrics
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/PipelineMetrics'

  /api/v1/pipelines/{pipelineId}/logs:
    get:
      summary: Stream pipeline logs
      parameters:
        - name: pipelineId
          in: path
          required: true
          schema:
            type: string
        - name: follow
          in: query
          schema:
            type: boolean
            default: false
        - name: level
          in: query
          schema:
            type: string
            enum: [debug, info, warn, error]
            default: info
      responses:
        '200':
          description: Pipeline logs
          content:
            text/plain:
              schema:
                type: string
            application/x-ndjson:
              schema:
                $ref: '#/components/schemas/LogEntry'

  /api/v1/data-sources:
    get:
      summary: List supported data sources
      responses:
        '200':
          description: Supported data sources
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/DataSourceList'

    post:
      summary: Register new data source
      requestBody:
        required: true
        content:
          application/json:
            schema:
              $ref: '#/components/schemas/DataSourceRegistration'
      responses:
        '201':
          description: Data source registered
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/DataSource'

  /api/v1/data-sources/{sourceId}/test:
    post:
      summary: Test data source connectivity
      parameters:
        - name: sourceId
          in: path
          required: true
          schema:
            type: string
      responses:
        '200':
          description: Connection test results
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/ConnectionTestResult'

  /api/v1/knowledge/entities:
    get:
      summary: Search knowledge entities
      parameters:
        - name: query
          in: query
          required: true
          schema:
            type: string
        - name: type
          in: query
          schema:
            type: string
        - name: limit
          in: query
          schema:
            type: integer
            default: 20
        - name: offset
          in: query
          schema:
            type: integer
            default: 0
      responses:
        '200':
          description: Knowledge entities
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/EntitySearchResult'

  /api/v1/knowledge/relationships:
    get:
      summary: Get entity relationships
      parameters:
        - name: entityId
          in: query
          required: true
          schema:
            type: string
        - name: relationshipType
          in: query
          schema:
            type: string
        - name: depth
          in: query
          schema:
            type: integer
            default: 1
            minimum: 1
            maximum: 5
      responses:
        '200':
          description: Entity relationships
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/RelationshipGraph'

  /api/v1/knowledge/search:
    post:
      summary: Semantic knowledge search
      requestBody:
        required: true
        content:
          application/json:
            schema:
              $ref: '#/components/schemas/SemanticSearchRequest'
      responses:
        '200':
          description: Search results
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/SemanticSearchResponse'

components:
  schemas:
    PipelineCreationRequest:
      type: object
      required:
        - name
        - config
      properties:
        name:
          type: string
          example: "customer-knowledge-pipeline"
        description:
          type: string
        config:
          $ref: '#/components/schemas/PipelineConfig'
        tags:
          type: array
          items:
            type: string

    PipelineConfig:
      type: object
      required:
        - type
        - dataSources
        - transformations
        - outputs
      properties:
        type:
          type: string
          enum: [streaming, batch, hybrid]
        dataSources:
          type: array
          items:
            $ref: '#/components/schemas/DataSourceConfig'
        transformations:
          type: array
          items:
            $ref: '#/components/schemas/TransformationConfig'
        outputs:
          type: array
          items:
            $ref: '#/components/schemas/OutputConfig'
        scheduling:
          $ref: '#/components/schemas/SchedulingConfig'
        resources:
          $ref: '#/components/schemas/ResourceConfig'

    DataSourceConfig:
      type: object
      required:
        - type
        - connection
      properties:
        id:
          type: string
        type:
          type: string
          enum: [database, api, file, kafka, webhook, s3]
        connection:
          $ref: '#/components/schemas/ConnectionConfig'
        schema:
          type: object
          description: "Expected data schema"
        polling:
          $ref: '#/components/schemas/PollingConfig'

    ConnectionConfig:
      type: object
      properties:
        url:
          type: string
        credentials:
          type: object
          properties:
            type:
              type: string
              enum: [basic, bearer, oauth2, api_key, certificate]
            username:
              type: string
            password:
              type: string
              format: password
            token:
              type: string
            api_key:
              type: string
            certificate:
              type: string
        headers:
          type: object
          additionalProperties:
            type: string
        parameters:
          type: object
          additionalProperties: true

    TransformationConfig:
      type: object
      required:
        - type
        - config
      properties:
        id:
          type: string
        type:
          type: string
          enum: [filter, map, enrich, validate, extract, aggregate]
        config:
          type: object
          additionalProperties: true
        dependencies:
          type: array
          items:
            type: string

    OutputConfig:
      type: object
      required:
        - type
        - destination
      properties:
        type:
          type: string
          enum: [knowledge_graph, vector_db, database, file, api]
        destination:
          $ref: '#/components/schemas/DestinationConfig'
        format:
          type: string
          enum: [json, csv, parquet, avro]

    Pipeline:
      type: object
      properties:
        id:
          type: string
          format: uuid
        name:
          type: string
        description:
          type: string
        status:
          type: string
          enum: [creating, running, stopped, failed, deleted]
        config:
          $ref: '#/components/schemas/PipelineConfig'
        metrics:
          $ref: '#/components/schemas/PipelineMetrics'
        created_at:
          type: string
          format: date-time
        updated_at:
          type: string
          format: date-time
        started_at:
          type: string
          format: date-time
        stopped_at:
          type: string
          format: date-time

    PipelineMetrics:
      type: object
      properties:
        records_processed:
          type: integer
          format: int64
        records_per_second:
          type: number
        error_rate:
          type: number
          minimum: 0
          maximum: 1
        latency_p95:
          type: number
        latency_p99:
          type: number
        cpu_usage:
          type: number
        memory_usage:
          type: number
        disk_usage:
          type: number

    SemanticSearchRequest:
      type: object
      required:
        - query
      properties:
        query:
          type: string
          example: "sustainable energy solutions"
        filters:
          type: object
          properties:
            entity_types:
              type: array
              items:
                type: string
            date_range:
              type: object
              properties:
                start:
                  type: string
                  format: date-time
                end:
                  type: string
                  format: date-time
            source:
              type: array
              items:
                type: string
        options:
          type: object
          properties:
            limit:
              type: integer
              default: 10
              minimum: 1
              maximum: 100
            similarity_threshold:
              type: number
              default: 0.7
              minimum: 0
              maximum: 1
            include_relationships:
              type: boolean
              default: false

    SemanticSearchResponse:
      type: object
      properties:
        results:
          type: array
          items:
            $ref: '#/components/schemas/SearchResult'
        total_results:
          type: integer
        execution_time_ms:
          type: integer
        query_vector:
          type: array
          items:
            type: number

    SearchResult:
      type: object
      properties:
        id:
          type: string
        type:
          type: string
        content:
          type: string
        metadata:
          type: object
          additionalProperties: true
        similarity_score:
          type: number
        relationships:
          type: array
          items:
            $ref: '#/components/schemas/Relationship'

  securitySchemes:
    BearerAuth:
      type: http
      scheme: bearer
      bearerFormat: JWT
    ApiKeyAuth:
      type: apiKey
      in: header
      name: X-API-Key

security:
  - BearerAuth: []
  - ApiKeyAuth: []

GraphQL API

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# GraphQL schema for advanced querying
type Query {
  pipelines(
    filter: PipelineFilter
    sort: PipelineSort
    pagination: PaginationInput
  ): PipelineConnection!
  
  pipeline(id: ID!): Pipeline
  
  knowledgeSearch(
    query: String!
    filters: SearchFilters
    options: SearchOptions
  ): KnowledgeSearchResult!
  
  entities(
    filter: EntityFilter
    pagination: PaginationInput
  ): EntityConnection!
  
  entity(id: ID!): Entity
  
  relationships(
    entityId: ID!
    types: [String!]
    depth: Int = 1
  ): RelationshipGraph!
}

type Mutation {
  createPipeline(input: PipelineInput!): PipelinePayload!
  updatePipeline(id: ID!, input: PipelineUpdateInput!): PipelinePayload!
  deletePipeline(id: ID!): DeletePayload!
  
  startPipeline(id: ID!): PipelineOperationPayload!
  stopPipeline(id: ID!): PipelineOperationPayload!
  
  registerDataSource(input: DataSourceInput!): DataSourcePayload!
  testDataSource(id: ID!): ConnectionTestPayload!
}

type Subscription {
  pipelineMetrics(pipelineId: ID!): PipelineMetricsUpdate!
  pipelineLogs(pipelineId: ID!): LogEntry!
  knowledgeUpdates(entityTypes: [String!]): KnowledgeUpdate!
}

# Core types
type Pipeline {
  id: ID!
  name: String!
  description: String
  status: PipelineStatus!
  config: PipelineConfig!
  metrics: PipelineMetrics
  dataSources: [DataSource!]!
  transformations: [Transformation!]!
  outputs: [Output!]!
  createdAt: DateTime!
  updatedAt: DateTime!
  startedAt: DateTime
  stoppedAt: DateTime
}

enum PipelineStatus {
  CREATING
  RUNNING
  STOPPED
  FAILED
  DELETED
}

type Entity {
  id: ID!
  type: String!
  name: String!
  properties: JSON!
  relationships: [Relationship!]!
  sources: [String!]!
  confidence: Float!
  createdAt: DateTime!
  updatedAt: DateTime!
}

type Relationship {
  id: ID!
  type: String!
  source: Entity!
  target: Entity!
  properties: JSON!
  confidence: Float!
  createdAt: DateTime!
}

# Custom scalars
scalar DateTime
scalar JSON

gRPC Service Definition

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
// knowledge_pipeline.proto
syntax = "proto3";

package aimatrix.knowledge.v1;

import "google/protobuf/timestamp.proto";
import "google/protobuf/struct.proto";
import "google/protobuf/empty.proto";

// Knowledge Pipeline Service
service KnowledgePipelineService {
  // Pipeline management
  rpc CreatePipeline(CreatePipelineRequest) returns (CreatePipelineResponse);
  rpc GetPipeline(GetPipelineRequest) returns (Pipeline);
  rpc ListPipelines(ListPipelinesRequest) returns (ListPipelinesResponse);
  rpc UpdatePipeline(UpdatePipelineRequest) returns (Pipeline);
  rpc DeletePipeline(DeletePipelineRequest) returns (google.protobuf.Empty);
  
  // Pipeline operations
  rpc StartPipeline(PipelineOperationRequest) returns (PipelineOperationResponse);
  rpc StopPipeline(PipelineOperationRequest) returns (PipelineOperationResponse);
  
  // Monitoring
  rpc GetPipelineMetrics(GetPipelineMetricsRequest) returns (PipelineMetrics);
  rpc StreamPipelineLogs(StreamLogsRequest) returns (stream LogEntry);
  
  // Knowledge queries
  rpc SearchKnowledge(SearchKnowledgeRequest) returns (SearchKnowledgeResponse);
  rpc GetEntity(GetEntityRequest) returns (Entity);
  rpc GetRelationships(GetRelationshipsRequest) returns (RelationshipGraph);
}

// Data Source Service
service DataSourceService {
  rpc RegisterDataSource(RegisterDataSourceRequest) returns (DataSource);
  rpc TestDataSource(TestDataSourceRequest) returns (ConnectionTestResult);
  rpc ListDataSources(ListDataSourcesRequest) returns (ListDataSourcesResponse);
}

// Request/Response Messages
message CreatePipelineRequest {
  string name = 1;
  string description = 2;
  PipelineConfig config = 3;
  repeated string tags = 4;
}

message CreatePipelineResponse {
  string pipeline_id = 1;
  PipelineStatus status = 2;
  google.protobuf.Timestamp created_at = 3;
  repeated Endpoint endpoints = 4;
}

message Pipeline {
  string id = 1;
  string name = 2;
  string description = 3;
  PipelineStatus status = 4;
  PipelineConfig config = 5;
  PipelineMetrics metrics = 6;
  google.protobuf.Timestamp created_at = 7;
  google.protobuf.Timestamp updated_at = 8;
  google.protobuf.Timestamp started_at = 9;
  google.protobuf.Timestamp stopped_at = 10;
}

message PipelineConfig {
  PipelineType type = 1;
  repeated DataSourceConfig data_sources = 2;
  repeated TransformationConfig transformations = 3;
  repeated OutputConfig outputs = 4;
  SchedulingConfig scheduling = 5;
  ResourceConfig resources = 6;
}

message DataSourceConfig {
  string id = 1;
  DataSourceType type = 2;
  ConnectionConfig connection = 3;
  google.protobuf.Struct schema = 4;
  PollingConfig polling = 5;
}

message Entity {
  string id = 1;
  string type = 2;
  string name = 3;
  google.protobuf.Struct properties = 4;
  repeated Relationship relationships = 5;
  repeated string sources = 6;
  float confidence = 7;
  google.protobuf.Timestamp created_at = 8;
  google.protobuf.Timestamp updated_at = 9;
}

// Enums
enum PipelineStatus {
  PIPELINE_STATUS_UNSPECIFIED = 0;
  PIPELINE_STATUS_CREATING = 1;
  PIPELINE_STATUS_RUNNING = 2;
  PIPELINE_STATUS_STOPPED = 3;
  PIPELINE_STATUS_FAILED = 4;
  PIPELINE_STATUS_DELETED = 5;
}

enum PipelineType {
  PIPELINE_TYPE_UNSPECIFIED = 0;
  PIPELINE_TYPE_STREAMING = 1;
  PIPELINE_TYPE_BATCH = 2;
  PIPELINE_TYPE_HYBRID = 3;
}

enum DataSourceType {
  DATA_SOURCE_TYPE_UNSPECIFIED = 0;
  DATA_SOURCE_TYPE_DATABASE = 1;
  DATA_SOURCE_TYPE_API = 2;
  DATA_SOURCE_TYPE_FILE = 3;
  DATA_SOURCE_TYPE_KAFKA = 4;
  DATA_SOURCE_TYPE_WEBHOOK = 5;
  DATA_SOURCE_TYPE_S3 = 6;
}

Implementation Examples

Kotlin/Spring Boot Service Implementation

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
// Main service implementation
@Service
@Transactional
@Component("knowledgePipelineService")
class KnowledgePipelineServiceImpl(
    private val pipelineRepository: PipelineRepository,
    private val dataSourceService: DataSourceService,
    private val streamProcessor: StreamProcessor,
    private val batchProcessor: BatchProcessor,
    private val knowledgeExtractor: KnowledgeExtractor,
    private val vectorService: VectorService,
    private val graphService: GraphService,
    private val metricsCollector: MetricsCollector
) : KnowledgePipelineService {

    private val logger = LoggerFactory.getLogger(KnowledgePipelineServiceImpl::class.java)

    @Async
    override suspend fun createPipeline(request: PipelineCreationRequest): PipelineResponse {
        logger.info("Creating pipeline: ${request.name}")
        
        // Validate configuration
        validatePipelineConfig(request.config)
        
        // Create pipeline entity
        val pipeline = PipelineEntity(
            id = UUID.randomUUID().toString(),
            name = request.name,
            description = request.description,
            config = request.config,
            status = PipelineStatus.CREATING,
            tags = request.tags,
            createdAt = Instant.now()
        )
        
        pipelineRepository.save(pipeline)
        
        try {
            // Deploy pipeline infrastructure
            val deployment = deployPipelineInfrastructure(pipeline)
            
            // Initialize data sources
            initializeDataSources(pipeline.config.dataSources)
            
            // Set up transformations
            setupTransformations(pipeline.id, pipeline.config.transformations)
            
            // Configure outputs
            configureOutputs(pipeline.id, pipeline.config.outputs)
            
            // Update pipeline status
            pipeline.status = PipelineStatus.STOPPED // Ready to start
            pipeline.updatedAt = Instant.now()
            pipelineRepository.save(pipeline)
            
            return PipelineResponse(
                pipelineId = pipeline.id,
                status = pipeline.status,
                endpoints = deployment.endpoints,
                createdAt = pipeline.createdAt
            )
            
        } catch (e: Exception) {
            logger.error("Failed to create pipeline: ${pipeline.id}", e)
            pipeline.status = PipelineStatus.FAILED
            pipeline.updatedAt = Instant.now()
            pipelineRepository.save(pipeline)
            throw PipelineCreationException("Failed to create pipeline", e)
        }
    }

    override suspend fun startPipeline(pipelineId: String): PipelineOperationResponse {
        val pipeline = pipelineRepository.findById(pipelineId)
            ?: throw PipelineNotFoundException(pipelineId)
        
        if (pipeline.status !in setOf(PipelineStatus.STOPPED, PipelineStatus.FAILED)) {
            throw IllegalStateException("Cannot start pipeline in status: ${pipeline.status}")
        }
        
        logger.info("Starting pipeline: $pipelineId")
        
        try {
            // Start processing based on pipeline type
            when (pipeline.config.type) {
                PipelineType.STREAMING -> startStreamingPipeline(pipeline)
                PipelineType.BATCH -> startBatchPipeline(pipeline)
                PipelineType.HYBRID -> startHybridPipeline(pipeline)
            }
            
            pipeline.status = PipelineStatus.RUNNING
            pipeline.startedAt = Instant.now()
            pipeline.updatedAt = Instant.now()
            pipelineRepository.save(pipeline)
            
            // Start metrics collection
            metricsCollector.startCollection(pipelineId)
            
            return PipelineOperationResponse(
                pipelineId = pipelineId,
                operation = "start",
                status = "success",
                timestamp = Instant.now()
            )
            
        } catch (e: Exception) {
            logger.error("Failed to start pipeline: $pipelineId", e)
            pipeline.status = PipelineStatus.FAILED
            pipeline.updatedAt = Instant.now()
            pipelineRepository.save(pipeline)
            throw PipelineOperationException("Failed to start pipeline", e)
        }
    }

    override suspend fun stopPipeline(pipelineId: String): PipelineOperationResponse {
        val pipeline = pipelineRepository.findById(pipelineId)
            ?: throw PipelineNotFoundException(pipelineId)
        
        if (pipeline.status != PipelineStatus.RUNNING) {
            throw IllegalStateException("Cannot stop pipeline in status: ${pipeline.status}")
        }
        
        logger.info("Stopping pipeline: $pipelineId")
        
        try {
            // Stop processing components
            when (pipeline.config.type) {
                PipelineType.STREAMING -> stopStreamingPipeline(pipeline)
                PipelineType.BATCH -> stopBatchPipeline(pipeline)
                PipelineType.HYBRID -> stopHybridPipeline(pipeline)
            }
            
            // Stop metrics collection
            metricsCollector.stopCollection(pipelineId)
            
            pipeline.status = PipelineStatus.STOPPED
            pipeline.stoppedAt = Instant.now()
            pipeline.updatedAt = Instant.now()
            pipelineRepository.save(pipeline)
            
            return PipelineOperationResponse(
                pipelineId = pipelineId,
                operation = "stop",
                status = "success",
                timestamp = Instant.now()
            )
            
        } catch (e: Exception) {
            logger.error("Failed to stop pipeline: $pipelineId", e)
            throw PipelineOperationException("Failed to stop pipeline", e)
        }
    }

    override suspend fun searchKnowledge(request: SemanticSearchRequest): SemanticSearchResponse {
        logger.info("Performing knowledge search: ${request.query}")
        
        // Generate query vector
        val queryVector = vectorService.generateEmbedding(request.query)
        
        // Perform vector similarity search
        val vectorResults = vectorService.similaritySearch(
            vector = queryVector,
            limit = request.options.limit,
            threshold = request.options.similarityThreshold,
            filters = request.filters
        )
        
        // Enhance results with graph relationships if requested
        val enhancedResults = if (request.options.includeRelationships) {
            vectorResults.map { result ->
                val relationships = graphService.getEntityRelationships(
                    entityId = result.id,
                    depth = 1
                )
                result.copy(relationships = relationships)
            }
        } else {
            vectorResults
        }
        
        return SemanticSearchResponse(
            results = enhancedResults,
            totalResults = vectorResults.size,
            executionTimeMs = System.currentTimeMillis(), // Calculate actual time
            queryVector = queryVector
        )
    }

    private suspend fun startStreamingPipeline(pipeline: PipelineEntity) {
        logger.info("Starting streaming pipeline: ${pipeline.id}")
        
        // Configure Kafka consumers
        val consumers = pipeline.config.dataSources
            .filter { it.type == DataSourceType.KAFKA }
            .map { source ->
                streamProcessor.createConsumer(
                    pipelineId = pipeline.id,
                    config = source,
                    processor = createStreamProcessor(pipeline.config.transformations)
                )
            }
        
        // Start consumers
        consumers.forEach { consumer ->
            streamProcessor.startConsumer(consumer)
        }
        
        // Configure other streaming sources (webhooks, APIs)
        configureStreamingSources(pipeline)
    }

    private suspend fun startBatchPipeline(pipeline: PipelineEntity) {
        logger.info("Starting batch pipeline: ${pipeline.id}")
        
        // Create batch job
        val job = batchProcessor.createJob(
            pipelineId = pipeline.id,
            config = pipeline.config,
            schedule = pipeline.config.scheduling
        )
        
        // Execute batch job
        batchProcessor.executeJob(job)
    }

    private suspend fun startHybridPipeline(pipeline: PipelineEntity) {
        logger.info("Starting hybrid pipeline: ${pipeline.id}")
        
        // Start both streaming and batch components
        startStreamingPipeline(pipeline)
        startBatchPipeline(pipeline)
    }

    private fun validatePipelineConfig(config: PipelineConfig) {
        // Validate data sources
        if (config.dataSources.isEmpty()) {
            throw ValidationException("At least one data source is required")
        }
        
        // Validate transformations
        config.transformations.forEach { transformation ->
            validateTransformation(transformation)
        }
        
        // Validate outputs
        if (config.outputs.isEmpty()) {
            throw ValidationException("At least one output is required")
        }
        
        // Validate dependencies
        validateTransformationDependencies(config.transformations)
    }
    
    private fun validateTransformation(transformation: TransformationConfig) {
        when (transformation.type) {
            TransformationType.FILTER -> validateFilterTransformation(transformation)
            TransformationType.MAP -> validateMapTransformation(transformation)
            TransformationType.ENRICH -> validateEnrichTransformation(transformation)
            TransformationType.VALIDATE -> validateValidateTransformation(transformation)
            TransformationType.EXTRACT -> validateExtractTransformation(transformation)
            TransformationType.AGGREGATE -> validateAggregateTransformation(transformation)
        }
    }
}

// Stream processor implementation using Apache Kafka Streams
@Component
class KafkaStreamProcessor(
    private val kafkaStreamsFactory: KafkaStreamsFactory,
    private val knowledgeExtractor: KnowledgeExtractor,
    private val vectorService: VectorService,
    private val graphService: GraphService
) : StreamProcessor {
    
    private val activeStreams = ConcurrentHashMap<String, KafkaStreams>()
    
    override suspend fun createConsumer(
        pipelineId: String,
        config: DataSourceConfig,
        processor: StreamProcessorChain
    ): StreamConsumer {
        
        val streamBuilder = StreamsBuilder()
        
        // Create stream from source topic
        val sourceStream = streamBuilder.stream<String, String>(config.connection.topic)
        
        // Apply transformations
        val processedStream = processor.process(sourceStream)
        
        // Extract knowledge and generate vectors
        val knowledgeStream = processedStream
            .mapValues { value ->
                // Extract entities and relationships
                val entities = knowledgeExtractor.extractEntities(value)
                val relationships = knowledgeExtractor.extractRelationships(value)
                
                KnowledgeData(
                    originalData = value,
                    entities = entities,
                    relationships = relationships,
                    vectors = vectorService.generateEmbeddings(entities)
                )
            }
        
        // Write to knowledge graph and vector database
        knowledgeStream.foreach { key, knowledge ->
            // Store entities in graph
            knowledge.entities.forEach { entity ->
                graphService.storeEntity(entity)
            }
            
            // Store relationships
            knowledge.relationships.forEach { relationship ->
                graphService.storeRelationship(relationship)
            }
            
            // Store vectors
            vectorService.storeVectors(knowledge.vectors)
        }
        
        val streams = kafkaStreamsFactory.createStreams(
            streamBuilder.build(),
            getStreamProperties(pipelineId)
        )
        
        return StreamConsumer(
            pipelineId = pipelineId,
            consumerId = UUID.randomUUID().toString(),
            streams = streams,
            config = config
        )
    }
    
    override suspend fun startConsumer(consumer: StreamConsumer) {
        consumer.streams.start()
        activeStreams[consumer.consumerId] = consumer.streams
    }
    
    override suspend fun stopConsumer(consumerId: String) {
        activeStreams[consumerId]?.close()
        activeStreams.remove(consumerId)
    }
    
    private fun getStreamProperties(pipelineId: String): Properties {
        return Properties().apply {
            put(StreamsConfig.APPLICATION_ID_CONFIG, "knowledge-pipeline-$pipelineId")
            put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092")
            put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String()::class.java)
            put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String()::class.java)
            put(StreamsConfig.PROCESSING_GUARANTEE_CONFIG, StreamsConfig.EXACTLY_ONCE_V2)
        }
    }
}

// Knowledge extraction service
@Service
class KnowledgeExtractionService(
    private val nlpService: NLPService,
    private val entityRecognizer: EntityRecognizer,
    private val relationshipExtractor: RelationshipExtractor
) : KnowledgeExtractor {
    
    override suspend fun extractEntities(text: String): List<Entity> {
        // Use NLP for entity recognition
        val namedEntities = nlpService.extractNamedEntities(text)
        
        // Custom entity recognition for domain-specific entities
        val domainEntities = entityRecognizer.recognizeEntities(text)
        
        // Combine and deduplicate
        return (namedEntities + domainEntities)
            .distinctBy { it.name.lowercase() }
            .map { namedEntity ->
                Entity(
                    id = UUID.randomUUID().toString(),
                    name = namedEntity.name,
                    type = namedEntity.type,
                    properties = mapOf(
                        "confidence" to namedEntity.confidence,
                        "source_text" to text,
                        "position" to namedEntity.position
                    ),
                    sources = listOf("nlp_extraction"),
                    confidence = namedEntity.confidence,
                    createdAt = Instant.now()
                )
            }
    }
    
    override suspend fun extractRelationships(text: String): List<Relationship> {
        // Extract entities first
        val entities = extractEntities(text)
        
        // Use relationship extraction models
        return relationshipExtractor.extractRelationships(text, entities)
            .map { extractedRel ->
                Relationship(
                    id = UUID.randomUUID().toString(),
                    type = extractedRel.type,
                    sourceId = extractedRel.sourceEntity.id,
                    targetId = extractedRel.targetEntity.id,
                    properties = mapOf(
                        "confidence" to extractedRel.confidence,
                        "source_text" to text,
                        "extracted_phrase" to extractedRel.phrase
                    ),
                    confidence = extractedRel.confidence,
                    createdAt = Instant.now()
                )
            }
    }
    
    override suspend fun extractKnowledge(data: Any): KnowledgeData {
        val text = when (data) {
            is String -> data
            is Map<*, *> -> data.values.joinToString(" ")
            else -> data.toString()
        }
        
        val entities = extractEntities(text)
        val relationships = extractRelationships(text)
        
        return KnowledgeData(
            originalData = data,
            entities = entities,
            relationships = relationships,
            vectors = emptyList() // Will be generated by vector service
        )
    }
}

// Vector service for embeddings and similarity search
@Service
class VectorService(
    private val embeddingModel: EmbeddingModel,
    private val vectorDatabase: VectorDatabase,
    private val dimensionalityReducer: DimensionalityReducer
) {
    
    suspend fun generateEmbedding(text: String): List<Float> {
        return embeddingModel.encode(text)
    }
    
    suspend fun generateEmbeddings(entities: List<Entity>): List<EntityVector> {
        return entities.map { entity ->
            val text = buildEntityText(entity)
            val vector = generateEmbedding(text)
            
            EntityVector(
                entityId = entity.id,
                vector = vector,
                dimensions = vector.size,
                model = embeddingModel.name,
                createdAt = Instant.now()
            )
        }
    }
    
    suspend fun similaritySearch(
        vector: List<Float>,
        limit: Int,
        threshold: Float,
        filters: SearchFilters?
    ): List<SearchResult> {
        return vectorDatabase.search(
            queryVector = vector,
            limit = limit,
            threshold = threshold,
            filters = filters
        )
    }
    
    suspend fun storeVectors(vectors: List<EntityVector>) {
        vectors.forEach { vector ->
            vectorDatabase.store(vector)
        }
    }
    
    private fun buildEntityText(entity: Entity): String {
        val properties = entity.properties.entries
            .joinToString(" ") { "${it.key}: ${it.value}" }
        return "${entity.name} ${entity.type} $properties"
    }
}

Database Schema & Models

PostgreSQL Schema

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
-- Pipelines table
CREATE TABLE pipelines (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    name VARCHAR(255) NOT NULL,
    description TEXT,
    user_id UUID NOT NULL,
    status VARCHAR(50) NOT NULL DEFAULT 'creating',
    type VARCHAR(50) NOT NULL,
    
    -- Configuration stored as JSONB
    config JSONB NOT NULL,
    
    -- Resource allocation
    resource_allocation JSONB,
    
    -- Timestamps
    created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    updated_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    started_at TIMESTAMP WITH TIME ZONE,
    stopped_at TIMESTAMP WITH TIME ZONE,
    
    -- Tags for organization
    tags TEXT[] DEFAULT '{}',
    
    -- Constraints
    CONSTRAINT pipelines_status_check CHECK (
        status IN ('creating', 'running', 'stopped', 'failed', 'deleted')
    ),
    CONSTRAINT pipelines_type_check CHECK (
        type IN ('streaming', 'batch', 'hybrid')
    )
);

-- Indexes
CREATE INDEX idx_pipelines_user_status ON pipelines(user_id, status);
CREATE INDEX idx_pipelines_status_created ON pipelines(status, created_at DESC);
CREATE INDEX idx_pipelines_type ON pipelines(type);
CREATE INDEX idx_pipelines_tags ON pipelines USING GIN(tags);
CREATE INDEX idx_pipelines_config ON pipelines USING GIN(config);

-- Data sources table
CREATE TABLE data_sources (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    name VARCHAR(255) NOT NULL,
    type VARCHAR(50) NOT NULL,
    connection_config JSONB NOT NULL,
    schema_config JSONB,
    
    -- Status and health
    status VARCHAR(50) NOT NULL DEFAULT 'active',
    last_health_check TIMESTAMP WITH TIME ZONE,
    health_status VARCHAR(50) DEFAULT 'unknown',
    
    -- Timestamps
    created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    updated_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    
    -- Constraints
    CONSTRAINT data_sources_type_check CHECK (
        type IN ('database', 'api', 'file', 'kafka', 'webhook', 's3')
    ),
    CONSTRAINT data_sources_status_check CHECK (
        status IN ('active', 'inactive', 'error')
    )
);

-- Pipeline executions table (for batch processing)
CREATE TABLE pipeline_executions (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    pipeline_id UUID NOT NULL REFERENCES pipelines(id) ON DELETE CASCADE,
    
    -- Execution details
    execution_type VARCHAR(50) NOT NULL,
    status VARCHAR(50) NOT NULL DEFAULT 'pending',
    
    -- Timing
    started_at TIMESTAMP WITH TIME ZONE,
    completed_at TIMESTAMP WITH TIME ZONE,
    duration INTERVAL,
    
    -- Statistics
    records_processed BIGINT DEFAULT 0,
    records_failed BIGINT DEFAULT 0,
    bytes_processed BIGINT DEFAULT 0,
    
    -- Error information
    error_message TEXT,
    error_stack TEXT,
    
    -- Configuration snapshot
    config_snapshot JSONB,
    
    created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);

-- Indexes for executions
CREATE INDEX idx_executions_pipeline ON pipeline_executions(pipeline_id);
CREATE INDEX idx_executions_status ON pipeline_executions(status);
CREATE INDEX idx_executions_started ON pipeline_executions(started_at DESC);

-- Knowledge entities table
CREATE TABLE knowledge_entities (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    name VARCHAR(500) NOT NULL,
    type VARCHAR(100) NOT NULL,
    
    -- Entity properties
    properties JSONB DEFAULT '{}'::jsonb,
    
    -- Source tracking
    sources TEXT[] DEFAULT '{}',
    pipeline_id UUID REFERENCES pipelines(id),
    
    -- Quality metrics
    confidence DECIMAL(3,2) DEFAULT 0.0,
    verification_status VARCHAR(50) DEFAULT 'unverified',
    
    -- Timestamps
    created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    updated_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    
    -- Full-text search
    search_vector tsvector,
    
    -- Constraints
    CONSTRAINT entities_confidence_check CHECK (confidence >= 0.0 AND confidence <= 1.0)
);

-- Full-text search index
CREATE INDEX idx_entities_search ON knowledge_entities USING GIN(search_vector);
CREATE INDEX idx_entities_type ON knowledge_entities(type);
CREATE INDEX idx_entities_confidence ON knowledge_entities(confidence DESC);
CREATE INDEX idx_entities_pipeline ON knowledge_entities(pipeline_id);
CREATE INDEX idx_entities_properties ON knowledge_entities USING GIN(properties);

-- Trigger for updating search vector
CREATE OR REPLACE FUNCTION update_entity_search_vector()
RETURNS TRIGGER AS $$
BEGIN
    NEW.search_vector := 
        setweight(to_tsvector('english', coalesce(NEW.name, '')), 'A') ||
        setweight(to_tsvector('english', coalesce(NEW.type, '')), 'B') ||
        setweight(to_tsvector('english', coalesce(NEW.properties::text, '')), 'D');
    RETURN NEW;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER trigger_update_entity_search_vector
    BEFORE INSERT OR UPDATE ON knowledge_entities
    FOR EACH ROW EXECUTE FUNCTION update_entity_search_vector();

-- Knowledge relationships table
CREATE TABLE knowledge_relationships (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    type VARCHAR(100) NOT NULL,
    
    -- Relationship endpoints
    source_entity_id UUID NOT NULL REFERENCES knowledge_entities(id) ON DELETE CASCADE,
    target_entity_id UUID NOT NULL REFERENCES knowledge_entities(id) ON DELETE CASCADE,
    
    -- Relationship properties
    properties JSONB DEFAULT '{}'::jsonb,
    
    -- Quality metrics
    confidence DECIMAL(3,2) DEFAULT 0.0,
    verification_status VARCHAR(50) DEFAULT 'unverified',
    
    -- Source tracking
    sources TEXT[] DEFAULT '{}',
    pipeline_id UUID REFERENCES pipelines(id),
    
    -- Timestamps
    created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    updated_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    
    -- Constraints
    CONSTRAINT relationships_confidence_check CHECK (confidence >= 0.0 AND confidence <= 1.0),
    CONSTRAINT relationships_endpoints_check CHECK (source_entity_id != target_entity_id),
    
    -- Unique constraint to prevent duplicates
    UNIQUE(source_entity_id, target_entity_id, type)
);

-- Indexes for relationships
CREATE INDEX idx_relationships_source ON knowledge_relationships(source_entity_id);
CREATE INDEX idx_relationships_target ON knowledge_relationships(target_entity_id);
CREATE INDEX idx_relationships_type ON knowledge_relationships(type);
CREATE INDEX idx_relationships_confidence ON knowledge_relationships(confidence DESC);
CREATE INDEX idx_relationships_pipeline ON knowledge_relationships(pipeline_id);

-- Vector embeddings table
CREATE TABLE entity_vectors (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    entity_id UUID NOT NULL REFERENCES knowledge_entities(id) ON DELETE CASCADE,
    
    -- Vector data
    vector REAL[] NOT NULL,
    dimensions INTEGER NOT NULL,
    model VARCHAR(100) NOT NULL,
    
    -- Metadata
    created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    
    -- Constraints
    CONSTRAINT vectors_dimensions_check CHECK (dimensions > 0 AND dimensions <= 4096),
    
    -- Unique constraint per entity and model
    UNIQUE(entity_id, model)
);

-- Vector similarity index (using pgvector extension)
-- Note: Requires pgvector extension to be installed
-- CREATE EXTENSION IF NOT EXISTS vector;
-- ALTER TABLE entity_vectors ADD COLUMN vector_data vector(1536);
-- CREATE INDEX idx_entity_vectors_similarity ON entity_vectors USING ivfflat(vector_data vector_cosine_ops);

-- Pipeline metrics table (time-series data)
CREATE TABLE pipeline_metrics (
    id BIGSERIAL PRIMARY KEY,
    pipeline_id UUID NOT NULL REFERENCES pipelines(id) ON DELETE CASCADE,
    
    -- Metric details
    metric_name VARCHAR(100) NOT NULL,
    metric_value DOUBLE PRECISION NOT NULL,
    metric_unit VARCHAR(50),
    
    -- Dimensions
    tags JSONB DEFAULT '{}'::jsonb,
    
    -- Timestamp
    timestamp TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);

-- Partitioning for metrics (by month)
CREATE TABLE pipeline_metrics_y2024m01 PARTITION OF pipeline_metrics
    FOR VALUES FROM ('2024-01-01') TO ('2024-02-01');

-- Continue partitioning for other months...

-- Indexes for metrics
CREATE INDEX idx_pipeline_metrics_pipeline_time ON pipeline_metrics(pipeline_id, timestamp DESC);
CREATE INDEX idx_pipeline_metrics_name_time ON pipeline_metrics(metric_name, timestamp DESC);
CREATE INDEX idx_pipeline_metrics_tags ON pipeline_metrics USING GIN(tags);

-- Pipeline logs table
CREATE TABLE pipeline_logs (
    id BIGSERIAL PRIMARY KEY,
    pipeline_id UUID NOT NULL REFERENCES pipelines(id) ON DELETE CASCADE,
    
    -- Log details
    timestamp TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    level VARCHAR(20) NOT NULL DEFAULT 'INFO',
    message TEXT NOT NULL,
    component VARCHAR(100),
    
    -- Additional context
    context JSONB DEFAULT '{}'::jsonb,
    
    -- Constraints
    CONSTRAINT logs_level_check CHECK (
        level IN ('DEBUG', 'INFO', 'WARN', 'ERROR', 'FATAL')
    )
);

-- Partitioning for logs (by week)
CREATE TABLE pipeline_logs_2024w01 PARTITION OF pipeline_logs
    FOR VALUES FROM ('2024-01-01') TO ('2024-01-08');

-- Continue partitioning...

-- Indexes for logs
CREATE INDEX idx_pipeline_logs_pipeline_time ON pipeline_logs(pipeline_id, timestamp DESC);
CREATE INDEX idx_pipeline_logs_level ON pipeline_logs(level);
CREATE INDEX idx_pipeline_logs_component ON pipeline_logs(component);

-- Data quality rules table
CREATE TABLE data_quality_rules (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    pipeline_id UUID NOT NULL REFERENCES pipelines(id) ON DELETE CASCADE,
    
    -- Rule definition
    name VARCHAR(255) NOT NULL,
    description TEXT,
    rule_type VARCHAR(50) NOT NULL,
    rule_config JSONB NOT NULL,
    
    -- Rule status
    enabled BOOLEAN DEFAULT true,
    severity VARCHAR(20) DEFAULT 'medium',
    
    -- Timestamps
    created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    updated_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    
    -- Constraints
    CONSTRAINT quality_rules_type_check CHECK (
        rule_type IN ('completeness', 'uniqueness', 'validity', 'consistency', 'accuracy')
    ),
    CONSTRAINT quality_rules_severity_check CHECK (
        severity IN ('low', 'medium', 'high', 'critical')
    )
);

-- Data quality violations table
CREATE TABLE data_quality_violations (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    rule_id UUID NOT NULL REFERENCES data_quality_rules(id) ON DELETE CASCADE,
    pipeline_id UUID NOT NULL REFERENCES pipelines(id) ON DELETE CASCADE,
    
    -- Violation details
    violation_type VARCHAR(100) NOT NULL,
    description TEXT NOT NULL,
    affected_records JSONB,
    
    -- Severity and status
    severity VARCHAR(20) NOT NULL,
    status VARCHAR(50) DEFAULT 'open',
    
    -- Resolution
    resolved_at TIMESTAMP WITH TIME ZONE,
    resolution_notes TEXT,
    
    -- Timestamps
    created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
    
    -- Constraints
    CONSTRAINT violations_status_check CHECK (
        status IN ('open', 'acknowledged', 'resolved', 'false_positive')
    )
);

-- Indexes for quality violations
CREATE INDEX idx_violations_rule ON data_quality_violations(rule_id);
CREATE INDEX idx_violations_pipeline ON data_quality_violations(pipeline_id);
CREATE INDEX idx_violations_status ON data_quality_violations(status);
CREATE INDEX idx_violations_severity ON data_quality_violations(severity);
CREATE INDEX idx_violations_created ON data_quality_violations(created_at DESC);

-- Functions and triggers
CREATE OR REPLACE FUNCTION update_updated_at_column()
RETURNS TRIGGER AS $$
BEGIN
    NEW.updated_at = NOW();
    RETURN NEW;
END;
$$ language 'plpgsql';

-- Apply update triggers
CREATE TRIGGER update_pipelines_updated_at BEFORE UPDATE
    ON pipelines FOR EACH ROW EXECUTE FUNCTION update_updated_at_column();

CREATE TRIGGER update_data_sources_updated_at BEFORE UPDATE
    ON data_sources FOR EACH ROW EXECUTE FUNCTION update_updated_at_column();

CREATE TRIGGER update_entities_updated_at BEFORE UPDATE
    ON knowledge_entities FOR EACH ROW EXECUTE FUNCTION update_updated_at_column();

CREATE TRIGGER update_relationships_updated_at BEFORE UPDATE
    ON knowledge_relationships FOR EACH ROW EXECUTE FUNCTION update_updated_at_column();

-- Views for common queries
CREATE VIEW pipeline_summary AS
SELECT 
    p.*,
    COUNT(pe.id) as total_executions,
    COUNT(CASE WHEN pe.status = 'completed' THEN 1 END) as successful_executions,
    COUNT(CASE WHEN pe.status = 'failed' THEN 1 END) as failed_executions,
    MAX(pe.completed_at) as last_execution,
    AVG(EXTRACT(EPOCH FROM pe.duration)) as avg_duration_seconds
FROM pipelines p
LEFT JOIN pipeline_executions pe ON p.id = pe.pipeline_id
GROUP BY p.id;

CREATE VIEW entity_relationship_counts AS
SELECT 
    e.id,
    e.name,
    e.type,
    COUNT(r1.id) as outgoing_relationships,
    COUNT(r2.id) as incoming_relationships,
    (COUNT(r1.id) + COUNT(r2.id)) as total_relationships
FROM knowledge_entities e
LEFT JOIN knowledge_relationships r1 ON e.id = r1.source_entity_id
LEFT JOIN knowledge_relationships r2 ON e.id = r2.target_entity_id
GROUP BY e.id, e.name, e.type;

CREATE VIEW pipeline_health_status AS
SELECT 
    p.id,
    p.name,
    p.status,
    CASE 
        WHEN p.status = 'running' AND pe.status = 'failed' THEN 'unhealthy'
        WHEN p.status = 'running' AND pe.status = 'completed' THEN 'healthy'
        WHEN p.status = 'stopped' THEN 'stopped'
        ELSE 'unknown'
    END as health_status,
    pe.completed_at as last_execution,
    COUNT(dqv.id) as active_violations
FROM pipelines p
LEFT JOIN LATERAL (
    SELECT * FROM pipeline_executions
    WHERE pipeline_id = p.id
    ORDER BY created_at DESC
    LIMIT 1
) pe ON true
LEFT JOIN data_quality_violations dqv ON p.id = dqv.pipeline_id AND dqv.status = 'open'
GROUP BY p.id, p.name, p.status, pe.status, pe.completed_at;

JPA Entity Models

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// Pipeline Entity
@Entity
@Table(name = "pipelines")
@EntityListeners(AuditingEntityListener::class)
data class PipelineEntity(
    @Id
    @GeneratedValue(strategy = GenerationType.AUTO)
    val id: String = UUID.randomUUID().toString(),
    
    @Column(nullable = false)
    var name: String,
    
    @Column(columnDefinition = "TEXT")
    var description: String? = null,
    
    @Column(name = "user_id", nullable = false)
    var userId: UUID,
    
    @Enumerated(EnumType.STRING)
    var status: PipelineStatus = PipelineStatus.CREATING,
    
    @Enumerated(EnumType.STRING)
    var type: PipelineType,
    
    @Type(JsonType::class)
    @Column(columnDefinition = "jsonb")
    var config: PipelineConfig,
    
    @Type(JsonType::class)
    @Column(name = "resource_allocation", columnDefinition = "jsonb")
    var resourceAllocation: ResourceAllocation? = null,
    
    @CreatedDate
    @Column(name = "created_at", nullable = false, updatable = false)
    var createdAt: Instant? = null,
    
    @LastModifiedDate
    @Column(name = "updated_at")
    var updatedAt: Instant? = null,
    
    @Column(name = "started_at")
    var startedAt: Instant? = null,
    
    @Column(name = "stopped_at")
    var stoppedAt: Instant? = null,
    
    @Type(ArrayType::class)
    @Column(columnDefinition = "text[]")
    var tags: Array<String> = emptyArray(),
    
    // Relationships
    @OneToMany(mappedBy = "pipeline", cascade = [CascadeType.ALL], fetch = FetchType.LAZY)
    var executions: MutableList<PipelineExecutionEntity> = mutableListOf(),
    
    @OneToMany(mappedBy = "pipeline", cascade = [CascadeType.ALL], fetch = FetchType.LAZY)
    var metrics: MutableList<PipelineMetricEntity> = mutableListOf(),
    
    @OneToMany(mappedBy = "pipeline", cascade = [CascadeType.ALL], fetch = FetchType.LAZY)
    var logs: MutableList<PipelineLogEntity> = mutableListOf()
)

// Knowledge Entity
@Entity
@Table(name = "knowledge_entities")
@EntityListeners(AuditingEntityListener::class)
data class KnowledgeEntityEntity(
    @Id
    @GeneratedValue(strategy = GenerationType.AUTO)
    val id: String = UUID.randomUUID().toString(),
    
    @Column(nullable = false, length = 500)
    var name: String,
    
    @Column(nullable = false, length = 100)
    var type: String,
    
    @Type(JsonType::class)
    @Column(columnDefinition = "jsonb")
    var properties: Map<String, Any> = emptyMap(),
    
    @Type(ArrayType::class)
    @Column(columnDefinition = "text[]")
    var sources: Array<String> = emptyArray(),
    
    @ManyToOne(fetch = FetchType.LAZY)
    @JoinColumn(name = "pipeline_id")
    var pipeline: PipelineEntity? = null,
    
    @Column(precision = 3, scale = 2)
    var confidence: BigDecimal = BigDecimal.ZERO,
    
    @Enumerated(EnumType.STRING)
    @Column(name = "verification_status")
    var verificationStatus: VerificationStatus = VerificationStatus.UNVERIFIED,
    
    @CreatedDate
    @Column(name = "created_at", nullable = false, updatable = false)
    var createdAt: Instant? = null,
    
    @LastModifiedDate
    @Column(name = "updated_at")
    var updatedAt: Instant? = null,
    
    // Relationships
    @OneToMany(mappedBy = "sourceEntity", cascade = [CascadeType.ALL], fetch = FetchType.LAZY)
    var outgoingRelationships: MutableList<KnowledgeRelationshipEntity> = mutableListOf(),
    
    @OneToMany(mappedBy = "targetEntity", cascade = [CascadeType.ALL], fetch = FetchType.LAZY)
    var incomingRelationships: MutableList<KnowledgeRelationshipEntity> = mutableListOf(),
    
    @OneToMany(mappedBy = "entity", cascade = [CascadeType.ALL], fetch = FetchType.LAZY)
    var vectors: MutableList<EntityVectorEntity> = mutableListOf()
)

// Knowledge Relationship Entity
@Entity
@Table(name = "knowledge_relationships")
@EntityListeners(AuditingEntityListener::class)
data class KnowledgeRelationshipEntity(
    @Id
    @GeneratedValue(strategy = GenerationType.AUTO)
    val id: String = UUID.randomUUID().toString(),
    
    @Column(nullable = false, length = 100)
    var type: String,
    
    @ManyToOne(fetch = FetchType.LAZY)
    @JoinColumn(name = "source_entity_id", nullable = false)
    var sourceEntity: KnowledgeEntityEntity,
    
    @ManyToOne(fetch = FetchType.LAZY)
    @JoinColumn(name = "target_entity_id", nullable = false)
    var targetEntity: KnowledgeEntityEntity,
    
    @Type(JsonType::class)
    @Column(columnDefinition = "jsonb")
    var properties: Map<String, Any> = emptyMap(),
    
    @Column(precision = 3, scale = 2)
    var confidence: BigDecimal = BigDecimal.ZERO,
    
    @Enumerated(EnumType.STRING)
    @Column(name = "verification_status")
    var verificationStatus: VerificationStatus = VerificationStatus.UNVERIFIED,
    
    @Type(ArrayType::class)
    @Column(columnDefinition = "text[]")
    var sources: Array<String> = emptyArray(),
    
    @ManyToOne(fetch = FetchType.LAZY)
    @JoinColumn(name = "pipeline_id")
    var pipeline: PipelineEntity? = null,
    
    @CreatedDate
    @Column(name = "created_at", nullable = false, updatable = false)
    var createdAt: Instant? = null,
    
    @LastModifiedDate
    @Column(name = "updated_at")
    var updatedAt: Instant? = null
)

// Entity Vector Entity
@Entity
@Table(name = "entity_vectors")
data class EntityVectorEntity(
    @Id
    @GeneratedValue(strategy = GenerationType.AUTO)
    val id: String = UUID.randomUUID().toString(),
    
    @ManyToOne(fetch = FetchType.LAZY)
    @JoinColumn(name = "entity_id", nullable = false)
    var entity: KnowledgeEntityEntity,
    
    @Type(ArrayType::class)
    @Column(columnDefinition = "real[]", nullable = false)
    var vector: Array<Float>,
    
    @Column(nullable = false)
    var dimensions: Int,
    
    @Column(nullable = false, length = 100)
    var model: String,
    
    @CreatedDate
    @Column(name = "created_at", nullable = false, updatable = false)
    var createdAt: Instant? = null
)

// Enums
enum class PipelineStatus {
    CREATING, RUNNING, STOPPED, FAILED, DELETED
}

enum class PipelineType {
    STREAMING, BATCH, HYBRID
}

enum class VerificationStatus {
    UNVERIFIED, VERIFIED, REJECTED
}

enum class DataSourceType {
    DATABASE, API, FILE, KAFKA, WEBHOOK, S3
}

enum class TransformationType {
    FILTER, MAP, ENRICH, VALIDATE, EXTRACT, AGGREGATE
}

// Data classes for complex types
data class PipelineConfig(
    val type: PipelineType,
    val dataSources: List<DataSourceConfig>,
    val transformations: List<TransformationConfig>,
    val outputs: List<OutputConfig>,
    val scheduling: SchedulingConfig? = null,
    val resources: ResourceConfig? = null
)

data class DataSourceConfig(
    val id: String,
    val type: DataSourceType,
    val connection: ConnectionConfig,
    val schema: Map<String, Any>? = null,
    val polling: PollingConfig? = null
)

data class ConnectionConfig(
    val url: String,
    val credentials: CredentialsConfig? = null,
    val headers: Map<String, String> = emptyMap(),
    val parameters: Map<String, Any> = emptyMap(),
    val timeout: Duration = Duration.ofSeconds(30)
)

data class TransformationConfig(
    val id: String,
    val type: TransformationType,
    val config: Map<String, Any>,
    val dependencies: List<String> = emptyList()
)

data class OutputConfig(
    val type: String,
    val destination: DestinationConfig,
    val format: String? = null
)

Message Queue Patterns

Apache Kafka Integration

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
// Kafka configuration for knowledge pipeline
@Configuration
@EnableKafka
class KnowledgePipelineKafkaConfig {
    
    @Value("\${spring.kafka.bootstrap-servers}")
    private lateinit var bootstrapServers: String
    
    @Bean
    fun knowledgeProducerFactory(): ProducerFactory<String, Any> {
        return DefaultKafkaProducerFactory(knowledgeProducerConfigs())
    }
    
    @Bean
    fun knowledgeProducerConfigs(): Map<String, Any> {
        return mapOf(
            ProducerConfig.BOOTSTRAP_SERVERS_CONFIG to bootstrapServers,
            ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG to StringSerializer::class.java,
            ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG to JsonSerializer::class.java,
            ProducerConfig.ACKS_CONFIG to "all",
            ProducerConfig.RETRIES_CONFIG to 3,
            ProducerConfig.BATCH_SIZE_CONFIG to 16384,
            ProducerConfig.LINGER_MS_CONFIG to 5,
            ProducerConfig.COMPRESSION_TYPE_CONFIG to "snappy",
            ProducerConfig.IDEMPOTENCE_CONFIG to true,
            ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION to 5
        )
    }
    
    @Bean
    fun knowledgeKafkaTemplate(): KafkaTemplate<String, Any> {
        return KafkaTemplate(knowledgeProducerFactory()).apply {
            setDefaultTopic("knowledge.events")
        }
    }
    
    // Kafka Streams configuration
    @Bean
    fun kafkaStreamsConfig(): KafkaStreamsConfiguration {
        val properties = Properties().apply {
            put(StreamsConfig.APPLICATION_ID_CONFIG, "knowledge-pipeline-processor")
            put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers)
            put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String()::class.java)
            put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String()::class.java)
            put(StreamsConfig.PROCESSING_GUARANTEE_CONFIG, StreamsConfig.EXACTLY_ONCE_V2)
            put(StreamsConfig.STATE_DIR_CONFIG, "/tmp/kafka-streams")
            put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG, 1000)
            put(StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG, 10 * 1024 * 1024L)
        }
        
        return KafkaStreamsConfiguration(properties)
    }
}

// Knowledge event publisher
@Component
class KnowledgeEventPublisher(
    private val kafkaTemplate: KafkaTemplate<String, Any>
) {
    
    private val logger = LoggerFactory.getLogger(KnowledgeEventPublisher::class.java)
    
    suspend fun publishEntityCreated(entity: KnowledgeEntityEntity) {
        val event = EntityCreatedEvent(
            entityId = entity.id,
            name = entity.name,
            type = entity.type,
            properties = entity.properties,
            confidence = entity.confidence.toDouble(),
            pipelineId = entity.pipeline?.id,
            timestamp = entity.createdAt ?: Instant.now()
        )
        
        kafkaTemplate.send("knowledge.entity.created", entity.id, event)
            .addCallback(
                { result ->
                    logger.info("Published entity created event: ${result?.recordMetadata}")
                },
                { failure ->
                    logger.error("Failed to publish entity created event", failure)
                }
            )
    }
    
    suspend fun publishRelationshipCreated(relationship: KnowledgeRelationshipEntity) {
        val event = RelationshipCreatedEvent(
            relationshipId = relationship.id,
            type = relationship.type,
            sourceEntityId = relationship.sourceEntity.id,
            targetEntityId = relationship.targetEntity.id,
            properties = relationship.properties,
            confidence = relationship.confidence.toDouble(),
            pipelineId = relationship.pipeline?.id,
            timestamp = relationship.createdAt ?: Instant.now()
        )
        
        kafkaTemplate.send("knowledge.relationship.created", relationship.id, event)
    }
    
    suspend fun publishPipelineStatusChanged(
        pipeline: PipelineEntity, 
        previousStatus: PipelineStatus
    ) {
        val event = PipelineStatusChangedEvent(
            pipelineId = pipeline.id,
            name = pipeline.name,
            previousStatus = previousStatus,
            currentStatus = pipeline.status,
            timestamp = Instant.now()
        )
        
        kafkaTemplate.send("knowledge.pipeline.status-changed", pipeline.id, event)
    }
    
    suspend fun publishKnowledgeGraphUpdated(pipelineId: String, statistics: GraphStatistics) {
        val event = KnowledgeGraphUpdatedEvent(
            pipelineId = pipelineId,
            entityCount = statistics.entityCount,
            relationshipCount = statistics.relationshipCount,
            newEntities = statistics.newEntities,
            newRelationships = statistics.newRelationships,
            timestamp = Instant.now()
        )
        
        kafkaTemplate.send("knowledge.graph.updated", pipelineId, event)
    }
}

// Kafka Streams processing topology
@Component
class KnowledgeProcessingTopology(
    private val knowledgeExtractor: KnowledgeExtractor,
    private val vectorService: VectorService,
    private val graphService: GraphService,
    private val eventPublisher: KnowledgeEventPublisher
) {
    
    @Bean
    fun buildTopology(): Topology {
        val builder = StreamsBuilder()
        
        // Input stream from various data sources
        val rawDataStream = builder.stream<String, String>("raw.data.stream")
        
        // Data validation and filtering
        val validDataStream = rawDataStream
            .filter { _, value -> isValidData(value) }
            .mapValues { value -> sanitizeData(value) }
        
        // Knowledge extraction
        val knowledgeStream = validDataStream
            .mapValues { value -> 
                try {
                    knowledgeExtractor.extractKnowledge(value)
                } catch (e: Exception) {
                    logger.error("Knowledge extraction failed", e)
                    null
                }
            }
            .filter { _, knowledge -> knowledge != null }
        
        // Entity processing branch
        val entityStream = knowledgeStream
            .flatMapValues { knowledge ->
                knowledge.entities
            }
            .mapValues { entity ->
                // Enrich entity with additional data
                enrichEntity(entity)
            }
        
        // Relationship processing branch  
        val relationshipStream = knowledgeStream
            .flatMapValues { knowledge ->
                knowledge.relationships
            }
            .mapValues { relationship ->
                enrichRelationship(relationship)
            }
        
        // Vector generation
        val vectorStream = entityStream
            .mapValues { entity ->
                vectorService.generateEmbedding(buildEntityText(entity))
            }
        
        // Write to knowledge graph
        entityStream.foreach { key, entity ->
            graphService.storeEntity(entity)
            eventPublisher.publishEntityCreated(entity.toEntity())
        }
        
        relationshipStream.foreach { key, relationship ->
            graphService.storeRelationship(relationship)
            eventPublisher.publishRelationshipCreated(relationship.toEntity())
        }
        
        // Write to vector database
        vectorStream.foreach { key, vector ->
            vectorService.storeVector(vector)
        }
        
        // Error handling stream
        val errorStream = rawDataStream
            .filter { _, value -> !isValidData(value) }
        
        errorStream.to("knowledge.errors")
        
        return builder.build()
    }
    
    private fun isValidData(value: String): Boolean {
        return value.isNotBlank() && value.length > 10
    }
    
    private fun sanitizeData(value: String): String {
        // Remove sensitive information, normalize text, etc.
        return value.trim()
            .replace(Regex("\\b\\d{4}-\\d{4}-\\d{4}-\\d{4}\\b"), "[CARD_NUMBER]")
            .replace(Regex("\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Z|a-z]{2,}\\b"), "[EMAIL]")
    }
    
    private fun enrichEntity(entity: Entity): Entity {
        // Add external data, validate against existing knowledge, etc.
        return entity.copy(
            properties = entity.properties + mapOf(
                "enriched_at" to Instant.now(),
                "enrichment_version" to "1.0"
            )
        )
    }
    
    private fun enrichRelationship(relationship: Relationship): Relationship {
        return relationship.copy(
            properties = relationship.properties + mapOf(
                "enriched_at" to Instant.now(),
                "enrichment_version" to "1.0"
            )
        )
    }
    
    private fun buildEntityText(entity: Entity): String {
        val properties = entity.properties.entries
            .joinToString(" ") { "${it.key}: ${it.value}" }
        return "${entity.name} ${entity.type} $properties"
    }
}

// Event DTOs
data class EntityCreatedEvent(
    val entityId: String,
    val name: String,
    val type: String,
    val properties: Map<String, Any>,
    val confidence: Double,
    val pipelineId: String?,
    val timestamp: Instant
)

data class RelationshipCreatedEvent(
    val relationshipId: String,
    val type: String,
    val sourceEntityId: String,
    val targetEntityId: String,
    val properties: Map<String, Any>,
    val confidence: Double,
    val pipelineId: String?,
    val timestamp: Instant
)

data class PipelineStatusChangedEvent(
    val pipelineId: String,
    val name: String,
    val previousStatus: PipelineStatus,
    val currentStatus: PipelineStatus,
    val timestamp: Instant
)

data class KnowledgeGraphUpdatedEvent(
    val pipelineId: String,
    val entityCount: Long,
    val relationshipCount: Long,
    val newEntities: Long,
    val newRelationships: Long,
    val timestamp: Instant
)

Performance & Scaling

Apache Flink Integration for Stream Processing

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
// Flink job configuration
@Configuration
class FlinkConfig {
    
    @Bean
    fun flinkEnvironment(): StreamExecutionEnvironment {
        val env = StreamExecutionEnvironment.getExecutionEnvironment()
        
        // Configure parallelism
        env.parallelism = 4
        
        // Configure checkpointing
        env.enableCheckpointing(60000) // 1 minute
        env.checkpointConfig.checkpointingMode = CheckpointingMode.EXACTLY_ONCE
        env.checkpointConfig.minPauseBetweenCheckpoints = 5000
        env.checkpointConfig.checkpointTimeout = 600000 // 10 minutes
        env.checkpointConfig.maxConcurrentCheckpoints = 1
        
        // Configure restart strategy
        env.restartStrategy = RestartStrategies.fixedDelayRestart(3, Time.seconds(30))
        
        return env
    }
}

// Flink knowledge processing job
@Component
class FlinkKnowledgeProcessingJob(
    private val flinkEnv: StreamExecutionEnvironment,
    private val knowledgeExtractor: KnowledgeExtractor,
    private val vectorService: VectorService
) {
    
    fun createKnowledgeProcessingJob(pipelineConfig: PipelineConfig): JobGraph {
        
        // Kafka source
        val kafkaSource = KafkaSource.builder<String>()
            .setBootstrapServers("localhost:9092")
            .setTopics("raw-data")
            .setGroupId("knowledge-pipeline")
            .setStartingOffsets(OffsetsInitializer.latest())
            .setValueOnlyDeserializer(SimpleStringSchema())
            .build()
        
        val rawDataStream = flinkEnv.fromSource(
            kafkaSource,
            WatermarkStrategy.noWatermarks(),
            "Kafka Source"
        )
        
        // Data validation and cleaning
        val cleanDataStream = rawDataStream
            .filter { data -> data.isNotBlank() && data.length > 10 }
            .map { data -> sanitizeData(data) }
            .name("Data Cleaning")
        
        // Knowledge extraction
        val knowledgeStream = cleanDataStream
            .flatMap { data ->
                try {
                    val knowledge = knowledgeExtractor.extractKnowledge(data)
                    knowledge.entities + knowledge.relationships.map { it as Any }
                } catch (e: Exception) {
                    logger.error("Knowledge extraction failed", e)
                    emptyList<Any>()
                }
            }
            .name("Knowledge Extraction")
        
        // Entity processing
        val entityStream = knowledgeStream
            .filter { item -> item is Entity }
            .map { item -> item as Entity }
            .keyBy { entity -> entity.type }
            .process(EntityProcessingFunction())
            .name("Entity Processing")
        
        // Vector generation
        val vectorStream = entityStream
            .map { entity ->
                val text = buildEntityText(entity)
                val vector = vectorService.generateEmbedding(text)
                EntityVector(entity.id, vector, vector.size, "sentence-transformers", Instant.now())
            }
            .name("Vector Generation")
        
        // Elasticsearch sink for entities
        val elasticsearchSink = ElasticsearchSink.builder(
            listOf(HttpHost("localhost", 9200, "http")),
            ElasticsearchSinkFunction<Entity> { entity, context, indexer ->
                val json = objectMapper.writeValueAsString(entity)
                indexer.add(
                    IndexRequest("knowledge-entities")
                        .id(entity.id)
                        .source(json, XContentType.JSON)
                )
            }
        ).build()
        
        entityStream.addSink(elasticsearchSink).name("Elasticsearch Sink")
        
        // Vector database sink
        val vectorSink = SinkFunction<EntityVector> { vector ->
            vectorService.storeVector(vector)
        }
        
        vectorStream.addSink(vectorSink).name("Vector Database Sink")
        
        return flinkEnv.streamGraph.jobGraph
    }
    
    // Custom processing function for entities
    class EntityProcessingFunction : ProcessFunction<Entity, Entity>() {
        
        private lateinit var entityState: ValueState<Entity>
        
        override fun open(parameters: Configuration) {
            entityState = runtimeContext.getState(
                ValueStateDescriptor("entity-state", Entity::class.java)
            )
        }
        
        override fun processElement(
            entity: Entity,
            context: ProcessFunction<Entity, Entity>.Context,
            out: Collector<Entity>
        ) {
            val existingEntity = entityState.value()
            
            if (existingEntity == null) {
                // New entity
                entityState.update(entity)
                out.collect(entity)
            } else {
                // Merge with existing entity
                val mergedEntity = mergeEntities(existingEntity, entity)
                entityState.update(mergedEntity)
                out.collect(mergedEntity)
            }
        }
        
        private fun mergeEntities(existing: Entity, new: Entity): Entity {
            // Merge properties, update confidence, etc.
            val mergedProperties = existing.properties.toMutableMap()
            mergedProperties.putAll(new.properties)
            
            return existing.copy(
                properties = mergedProperties,
                confidence = maxOf(existing.confidence, new.confidence),
                sources = (existing.sources + new.sources).distinct()
            )
        }
    }
}

Distributed Caching with Redis Cluster

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
// Redis cluster configuration
@Configuration
@EnableCaching
class RedisCacheConfig {
    
    @Bean
    fun redisConnectionFactory(): RedisConnectionFactory {
        val clusterConfiguration = RedisClusterConfiguration().apply {
            clusterNode("redis-cluster-1", 7000)
            clusterNode("redis-cluster-2", 7001)
            clusterNode("redis-cluster-3", 7002)
            maxRedirects = 3
        }
        
        val jedisConnectionFactory = JedisConnectionFactory(clusterConfiguration)
        jedisConnectionFactory.poolConfig.apply {
            maxTotal = 20
            maxIdle = 10
            minIdle = 5
            testOnBorrow = true
            testOnReturn = true
        }
        
        return jedisConnectionFactory
    }
    
    @Bean
    fun cacheManager(redisConnectionFactory: RedisConnectionFactory): CacheManager {
        val defaultConfig = RedisCacheConfiguration.defaultCacheConfig()
            .entryTtl(Duration.ofMinutes(30))
            .serializeKeysWith(RedisSerializationContext.SerializationPair.fromSerializer(StringRedisSerializer()))
            .serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(GenericJackson2JsonRedisSerializer()))
            .disableCachingNullValues()
        
        val cacheConfigurations = mapOf(
            "entities" to defaultConfig.entryTtl(Duration.ofHours(2)),
            "relationships" to defaultConfig.entryTtl(Duration.ofHours(1)),
            "vectors" to defaultConfig.entryTtl(Duration.ofMinutes(15)),
            "pipeline-metrics" to defaultConfig.entryTtl(Duration.ofMinutes(5))
        )
        
        return RedisCacheManager.builder(redisConnectionFactory)
            .cacheDefaults(defaultConfig)
            .withInitialCacheConfigurations(cacheConfigurations)
            .build()
    }
    
    @Bean
    fun redisTemplate(redisConnectionFactory: RedisConnectionFactory): RedisTemplate<String, Any> {
        return RedisTemplate<String, Any>().apply {
            connectionFactory = redisConnectionFactory
            keySerializer = StringRedisSerializer()
            valueSerializer = GenericJackson2JsonRedisSerializer()
            hashKeySerializer = StringRedisSerializer()
            hashValueSerializer = GenericJackson2JsonRedisSerializer()
        }
    }
}

// Cached knowledge service
@Service
class CachedKnowledgeService(
    private val knowledgeService: KnowledgeService,
    private val redisTemplate: RedisTemplate<String, Any>,
    private val cacheManager: CacheManager
) {
    
    @Cacheable(
        value = ["entities"],
        key = "#entityId",
        unless = "#result == null"
    )
    suspend fun getEntity(entityId: String): Entity? {
        return knowledgeService.getEntity(entityId)
    }
    
    @Cacheable(
        value = ["relationships"],
        key = "#entityId + ':' + #depth",
        unless = "#result.isEmpty()"
    )
    suspend fun getEntityRelationships(entityId: String, depth: Int): List<Relationship> {
        return knowledgeService.getEntityRelationships(entityId, depth)
    }
    
    @CacheEvict(
        value = ["entities", "relationships"],
        key = "#entityId"
    )
    suspend fun evictEntityCache(entityId: String) {
        // Additional cleanup
        val relationshipPattern = "relationships:*:$entityId:*"
        val keys = redisTemplate.keys(relationshipPattern)
        if (keys.isNotEmpty()) {
            redisTemplate.delete(keys)
        }
    }
    
    // Distributed locking for pipeline operations
    suspend fun executeWithLock(pipelineId: String, operation: suspend () -> Unit) {
        val lockKey = "pipeline:lock:$pipelineId"
        val lockValue = UUID.randomUUID().toString()
        val lockTimeout = Duration.ofMinutes(5)
        
        val acquired = redisTemplate.opsForValue().setIfAbsent(
            lockKey, lockValue, lockTimeout
        ) ?: false
        
        if (!acquired) {
            throw PipelineLockedException("Pipeline $pipelineId is currently locked")
        }
        
        try {
            operation()
        } finally {
            // Release lock only if we still own it
            val luaScript = """
                if redis.call('get', KEYS[1]) == ARGV[1] then
                    return redis.call('del', KEYS[1])
                else
                    return 0
                end
            """.trimIndent()
            
            redisTemplate.execute(RedisCallback { connection ->
                connection.eval(
                    luaScript.toByteArray(),
                    ReturnType.INTEGER,
                    1,
                    lockKey.toByteArray(),
                    lockValue.toByteArray()
                )
            })
        }
    }
}

Security Implementation

Authentication & Authorization

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
// Security configuration for knowledge pipeline
@Configuration
@EnableWebFluxSecurity
@EnableReactiveMethodSecurity
class KnowledgePipelineSecurityConfig {
    
    @Bean
    fun securityWebFilterChain(
        http: ServerHttpSecurity,
        jwtAuthenticationManager: ReactiveAuthenticationManager
    ): SecurityWebFilterChain {
        
        return http
            .csrf().disable()
            .httpBasic().disable()
            .formLogin().disable()
            .authorizeExchange { exchanges ->
                exchanges
                    .pathMatchers("/actuator/health", "/actuator/info").permitAll()
                    .pathMatchers("/api/v1/pipelines/**").hasRole("PIPELINE_USER")
                    .pathMatchers("/api/v1/knowledge/search").hasRole("KNOWLEDGE_READER")
                    .pathMatchers("/api/v1/admin/**").hasRole("ADMIN")
                    .anyExchange().authenticated()
            }
            .oauth2ResourceServer { oauth2 ->
                oauth2.jwt { jwt ->
                    jwt.authenticationManager(jwtAuthenticationManager)
                }
            }
            .build()
    }
}

// Data access security
@Service
@PreAuthorize("hasRole('PIPELINE_USER')")
class SecureKnowledgePipelineService(
    private val pipelineService: KnowledgePipelineService,
    private val auditService: AuditService
) {
    
    @PreAuthorize("hasPermission(#request, 'CREATE_PIPELINE')")
    suspend fun createPipeline(request: PipelineCreationRequest): PipelineResponse {
        auditService.logPipelineCreation(request)
        return pipelineService.createPipeline(request)
    }
    
    @PreAuthorize("@pipelineSecurityService.canAccessPipeline(#pipelineId, authentication.name)")
    suspend fun getPipeline(pipelineId: String): Pipeline? {
        return pipelineService.getPipeline(pipelineId)
    }
    
    @PreAuthorize("hasRole('KNOWLEDGE_READER')")
    @PostFilter("@knowledgeSecurityService.canAccessEntity(filterObject, authentication.name)")
    suspend fun searchKnowledge(request: SemanticSearchRequest): SemanticSearchResponse {
        auditService.logKnowledgeSearch(request)
        return pipelineService.searchKnowledge(request)
    }
}

// Pipeline security service
@Component
class PipelineSecurityService(
    private val pipelineRepository: PipelineRepository
) {
    
    fun canAccessPipeline(pipelineId: String, userId: String): Boolean {
        val pipeline = pipelineRepository.findById(pipelineId)
        return pipeline?.userId.toString() == userId || hasAdminRole(userId)
    }
    
    private fun hasAdminRole(userId: String): Boolean {
        // Check user roles from authentication context or user service
        return SecurityContextHolder.getContext().authentication
            ?.authorities
            ?.any { it.authority == "ROLE_ADMIN" } ?: false
    }
}

Data Encryption and Privacy

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
// Data privacy service
@Service
class DataPrivacyService(
    private val encryptionService: EncryptionService
) {
    
    // PII detection and redaction
    fun sanitizeData(data: String): String {
        return data
            .replace(Regex("\\b\\d{3}-\\d{2}-\\d{4}\\b"), "[SSN_REDACTED]")
            .replace(Regex("\\b\\d{4}[\\s-]?\\d{4}[\\s-]?\\d{4}[\\s-]?\\d{4}\\b"), "[CARD_REDACTED]")
            .replace(Regex("\\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\\.[A-Z|a-z]{2,}\\b"), "[EMAIL_REDACTED]")
            .replace(Regex("\\b\\d{3}[-.\\s]?\\d{3}[-.\\s]?\\d{4}\\b"), "[PHONE_REDACTED]")
    }
    
    // Differential privacy for knowledge extraction
    fun addPrivacyNoise(confidence: Double, epsilon: Double = 0.1): Double {
        val laplaceMechanism = LaplaceDistribution(0.0, 1.0 / epsilon)
        val noise = laplaceMechanism.sample()
        return (confidence + noise).coerceIn(0.0, 1.0)
    }
    
    // Encrypted entity storage
    suspend fun storeEncryptedEntity(entity: Entity): Entity {
        val encryptedProperties = entity.properties.mapValues { (key, value) ->
            if (shouldEncryptProperty(key)) {
                encryptionService.encrypt(value.toString())
            } else {
                value
            }
        }
        
        return entity.copy(properties = encryptedProperties)
    }
    
    private fun shouldEncryptProperty(propertyName: String): Boolean {
        val sensitiveProperties = setOf(
            "personal_data", "financial_info", "health_data", 
            "contact_info", "government_id"
        )
        return sensitiveProperties.contains(propertyName.lowercase())
    }
}

Next Steps:

  • Implement real-time data quality monitoring and alerting
  • Set up automated pipeline testing and validation
  • Configure cross-region data replication and disaster recovery
  • Add support for graph neural networks for advanced relationship prediction
  • Implement federated knowledge graphs for multi-tenant scenarios