RAG & GraphRAG

RAG & GraphRAG with Supabase

The RAG (Retrieval-Augmented Generation) and GraphRAG components leverage Supabase Vector to provide sophisticated information retrieval and reasoning capabilities. With pgvector’s native PostgreSQL integration, real-time subscriptions, and ACID guarantees, Supabase enables enterprise-grade RAG systems with unmatched reliability and performance.

Architecture Overview

  graph TB
    A[User Query] --> B[Query Analysis]
    B --> C[Supabase Retrieval Router]
    C --> D[Multi-Modal Retrieval]
    
    subgraph "Supabase Vector Platform"
        D --> E[pgvector Semantic Search]
        D --> F[PostgreSQL Full-text Search]
        D --> G[Graph Traversal (SQL)]
        D --> H[Hybrid Search Functions]
    end
    
    subgraph "Unified Data Layer"
        E --> I[Vector Embeddings]
        F --> J[TSVECTOR Indexes]
        G --> K[Graph Tables]
        H --> L[JSONB Documents]
    end
    
    I --> M[Real-time Context Assembly]
    J --> M
    K --> M
    L --> M
    
    M --> N[Context Optimization]
    N --> O[LLM Generation]
    O --> P[Response Validation]
    P --> Q[Final Response]
    
    subgraph "Supabase Real-time"
        Q --> R[Live Feedback]
        R --> S[Adaptive Learning]
        S --> C
        
        I -.->|Real-time Updates| T[Supabase Subscriptions]
        T -.-> C
    end

Advanced Retrieval Strategies

Hybrid Search Implementation

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from typing import List, Dict, Any, Optional, Tuple
import numpy as np
from dataclasses import dataclass
import asyncio
from sklearn.metrics.pairwise import cosine_similarity
import re

@dataclass
class SearchResult:
    content: str
    score: float
    source: str
    metadata: Dict[str, Any]
    retrieval_method: str

class HybridSearchEngine:
    def __init__(self, vector_store, text_search_engine, graph_db):
        self.vector_store = vector_store
        self.text_search_engine = text_search_engine
        self.graph_db = graph_db
        self.query_analyzer = QueryAnalyzer()
        self.result_ranker = ResultRanker()
        
    async def search(self, query: str, top_k: int = 10, 
                    search_strategies: Optional[List[str]] = None) -> List[SearchResult]:
        """Execute hybrid search with multiple strategies"""
        
        # Analyze query to determine optimal search strategies
        query_analysis = await self.query_analyzer.analyze(query)
        
        if search_strategies is None:
            search_strategies = self._select_strategies(query_analysis)
        
        # Execute searches in parallel
        search_tasks = []
        
        if 'semantic' in search_strategies:
            search_tasks.append(self._semantic_search(query, top_k))
            
        if 'keyword' in search_strategies:
            search_tasks.append(self._keyword_search(query, top_k))
            
        if 'graph' in search_strategies:
            search_tasks.append(self._graph_search(query, top_k))
            
        if 'phrase' in search_strategies:
            search_tasks.append(self._phrase_search(query, top_k))
            
        # Collect results
        search_results = await asyncio.gather(*search_tasks)
        
        # Combine and rank results
        all_results = []
        for results in search_results:
            all_results.extend(results)
            
        # Remove duplicates and re-rank
        unique_results = self._deduplicate_results(all_results)
        ranked_results = await self.result_ranker.rank(
            query, unique_results, query_analysis
        )
        
        return ranked_results[:top_k]
        
    async def _semantic_search(self, query: str, top_k: int) -> List[SearchResult]:
        """Perform vector-based semantic search"""
        query_embedding = await self.vector_store.embed_query(query)
        
        # Search with multiple embedding strategies
        results = []
        
        # Standard semantic search
        semantic_results = await self.vector_store.similarity_search(
            query_embedding, top_k=top_k
        )
        
        for result in semantic_results:
            results.append(SearchResult(
                content=result['content'],
                score=result['score'],
                source=result['source'],
                metadata=result['metadata'],
                retrieval_method='semantic'
            ))
            
        # Add hypothetical document embeddings (HyDE)
        hypothetical_doc = await self._generate_hypothetical_document(query)
        if hypothetical_doc:
            hyde_embedding = await self.vector_store.embed_query(hypothetical_doc)
            hyde_results = await self.vector_store.similarity_search(
                hyde_embedding, top_k=top_k//2
            )
            
            for result in hyde_results:
                results.append(SearchResult(
                    content=result['content'],
                    score=result['score'] * 0.9,  # Slightly lower weight
                    source=result['source'],
                    metadata=result['metadata'],
                    retrieval_method='hyde'
                ))
                
        return results
        
    async def _keyword_search(self, query: str, top_k: int) -> List[SearchResult]:
        """Perform keyword-based search with query expansion"""
        # Extract key terms
        key_terms = await self.query_analyzer.extract_key_terms(query)
        
        # Query expansion using synonyms and related terms
        expanded_terms = await self._expand_query_terms(key_terms)
        
        # Construct search query with boosting
        search_query = self._build_boosted_query(key_terms, expanded_terms)
        
        results = await self.text_search_engine.search(
            search_query, top_k=top_k
        )
        
        return [SearchResult(
            content=result['content'],
            score=result['score'],
            source=result['source'],
            metadata=result['metadata'],
            retrieval_method='keyword'
        ) for result in results]
        
    async def _graph_search(self, query: str, top_k: int) -> List[SearchResult]:
        """Perform graph-based search for entity relationships"""
        # Extract entities from query
        entities = await self.query_analyzer.extract_entities(query)
        
        results = []
        
        for entity in entities:
            # Find connected entities and relationships
            graph_results = await self.graph_db.traverse(
                start_entity=entity,
                max_depth=2,
                relationship_types=['RELATED_TO', 'PART_OF', 'INFLUENCES']
            )
            
            for result in graph_results:
                # Generate context from graph structure
                context = self._generate_graph_context(result)
                
                results.append(SearchResult(
                    content=context,
                    score=result['relevance_score'],
                    source=f"graph:{result['path']}",
                    metadata={
                        'entities': result['entities'],
                        'relationships': result['relationships']
                    },
                    retrieval_method='graph'
                ))
                
        return sorted(results, key=lambda x: x.score, reverse=True)[:top_k]

class QueryAnalyzer:
    def __init__(self):
        self.entity_extractor = EntityExtractor()
        self.intent_classifier = IntentClassifier()
        
    async def analyze(self, query: str) -> Dict[str, Any]:
        """Comprehensive query analysis"""
        analysis = {
            'query': query,
            'query_type': await self._classify_query_type(query),
            'entities': await self.entity_extractor.extract(query),
            'intent': await self.intent_classifier.classify(query),
            'complexity_score': self._calculate_complexity(query),
            'key_terms': await self.extract_key_terms(query),
            'semantic_focus': await self._identify_semantic_focus(query)
        }
        
        return analysis
        
    async def _classify_query_type(self, query: str) -> str:
        """Classify query type for strategy selection"""
        patterns = {
            'factual': [r'what is', r'define', r'explain'],
            'comparative': [r'compare', r'difference between', r'versus'],
            'procedural': [r'how to', r'steps to', r'process for'],
            'analytical': [r'why', r'analyze', r'impact of'],
            'temporal': [r'when', r'timeline', r'history of']
        }
        
        query_lower = query.lower()
        
        for query_type, pattern_list in patterns.items():
            for pattern in pattern_list:
                if re.search(pattern, query_lower):
                    return query_type
                    
        return 'general'
        
    def _calculate_complexity(self, query: str) -> float:
        """Calculate query complexity score"""
        factors = {
            'length': len(query.split()) / 20.0,  # Normalize by typical query length
            'entities': len(re.findall(r'\b[A-Z][a-z]+\b', query)) / 5.0,
            'conjunctions': len(re.findall(r'\b(and|or|but|because)\b', query.lower())) / 3.0,
            'questions': len(re.findall(r'\?', query)),
            'technical_terms': len(re.findall(r'\b[A-Z]{2,}\b', query)) / 3.0
        }
        
        complexity = sum(factors.values()) / len(factors)
        return min(1.0, complexity)

Context Window Optimization

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import tiktoken
from typing import List, Tuple
import numpy as np

class ContextOptimizer:
    def __init__(self, model_name: str = "gpt-4", max_tokens: int = 8192):
        self.tokenizer = tiktoken.encoding_for_model(model_name)
        self.max_tokens = max_tokens
        self.context_buffer = int(max_tokens * 0.1)  # 10% buffer
        
    def optimize_context(self, query: str, search_results: List[SearchResult],
                        system_prompt: str = "") -> Tuple[str, List[SearchResult]]:
        """Optimize context within token limits"""
        
        # Calculate token budget
        query_tokens = len(self.tokenizer.encode(query))
        system_tokens = len(self.tokenizer.encode(system_prompt))
        available_tokens = self.max_tokens - query_tokens - system_tokens - self.context_buffer
        
        # Score and select results
        scored_results = self._score_results_for_context(query, search_results)
        
        # Progressive context building
        selected_results = []
        current_tokens = 0
        
        for result in scored_results:
            result_tokens = len(self.tokenizer.encode(result.content))
            
            if current_tokens + result_tokens <= available_tokens:
                selected_results.append(result)
                current_tokens += result_tokens
            else:
                # Try to fit truncated version
                truncated_content = self._truncate_content(
                    result.content, 
                    available_tokens - current_tokens
                )
                
                if truncated_content:
                    result.content = truncated_content
                    selected_results.append(result)
                    break
                    
        # Assemble optimized context
        context = self._assemble_context(selected_results)
        
        return context, selected_results
        
    def _score_results_for_context(self, query: str, 
                                 results: List[SearchResult]) -> List[SearchResult]:
        """Score results for context inclusion"""
        query_embedding = self._get_embedding(query)
        
        for result in results:
            # Combine multiple scoring factors
            content_embedding = self._get_embedding(result.content)
            semantic_score = cosine_similarity(
                [query_embedding], [content_embedding]
            )[0][0]
            
            # Diversity penalty (avoid too similar content)
            diversity_score = self._calculate_diversity_score(result, results)
            
            # Recency bonus
            recency_score = self._calculate_recency_score(result)
            
            # Authority bonus
            authority_score = self._calculate_authority_score(result)
            
            # Combined score
            result.context_score = (
                semantic_score * 0.4 +
                result.score * 0.3 +
                diversity_score * 0.1 +
                recency_score * 0.1 +
                authority_score * 0.1
            )
            
        return sorted(results, key=lambda x: x.context_score, reverse=True)
        
    def _truncate_content(self, content: str, max_tokens: int) -> str:
        """Intelligently truncate content"""
        if max_tokens <= 0:
            return ""
            
        # Try to preserve important sentences
        sentences = content.split('. ')
        
        truncated = ""
        current_tokens = 0
        
        for sentence in sentences:
            sentence_tokens = len(self.tokenizer.encode(sentence + ". "))
            
            if current_tokens + sentence_tokens <= max_tokens:
                truncated += sentence + ". "
                current_tokens += sentence_tokens
            else:
                # Add partial sentence if there's room
                remaining_tokens = max_tokens - current_tokens - 10
                if remaining_tokens > 20:
                    partial = sentence[:remaining_tokens * 4]  # Rough char estimate
                    truncated += partial + "..."
                break
                
        return truncated.strip()
        
    def _assemble_context(self, results: List[SearchResult]) -> str:
        """Assemble context with proper formatting"""
        context_parts = []
        
        for i, result in enumerate(results):
            context_part = f"[Source {i+1}: {result.source}]\n"
            context_part += f"{result.content}\n"
            
            if result.metadata:
                relevant_metadata = {
                    k: v for k, v in result.metadata.items() 
                    if k in ['author', 'date', 'type', 'confidence']
                }
                if relevant_metadata:
                    context_part += f"Metadata: {relevant_metadata}\n"
                    
            context_parts.append(context_part)
            
        return "\n".join(context_parts)

Multi-hop Reasoning

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
class GraphRAGEngine:
    def __init__(self, knowledge_graph, llm_client):
        self.kg = knowledge_graph
        self.llm = llm_client
        self.reasoning_chain = []
        
    async def multi_hop_reasoning(self, query: str, max_hops: int = 3) -> Dict[str, Any]:
        """Perform multi-hop reasoning across knowledge graph"""
        
        # Initialize reasoning state
        reasoning_state = {
            'original_query': query,
            'current_entities': [],
            'reasoning_path': [],
            'evidence': [],
            'confidence_scores': []
        }
        
        # Extract initial entities from query
        initial_entities = await self._extract_entities(query)
        reasoning_state['current_entities'] = initial_entities
        
        # Multi-hop traversal
        for hop in range(max_hops):
            hop_results = await self._execute_reasoning_hop(
                reasoning_state, hop
            )
            
            if not hop_results['continue_reasoning']:
                break
                
            reasoning_state = hop_results['updated_state']
            
        # Synthesize final answer
        final_answer = await self._synthesize_answer(reasoning_state)
        
        return {
            'answer': final_answer,
            'reasoning_path': reasoning_state['reasoning_path'],
            'evidence': reasoning_state['evidence'],
            'confidence': np.mean(reasoning_state['confidence_scores']) if reasoning_state['confidence_scores'] else 0.0
        }
        
    async def _execute_reasoning_hop(self, state: Dict, hop_number: int) -> Dict:
        """Execute single reasoning hop"""
        current_entities = state['current_entities']
        
        # Generate reasoning questions for current hop
        reasoning_questions = await self._generate_hop_questions(
            state['original_query'], 
            state['reasoning_path'],
            current_entities,
            hop_number
        )
        
        hop_evidence = []
        new_entities = set()
        
        for question in reasoning_questions:
            # Query knowledge graph
            graph_results = await self.kg.query_with_reasoning(
                entities=current_entities,
                question=question,
                max_depth=2
            )
            
            # Process results
            for result in graph_results:
                evidence_piece = {
                    'question': question,
                    'fact': result['fact'],
                    'entities': result['entities'],
                    'relationships': result['relationships'],
                    'confidence': result['confidence'],
                    'hop': hop_number
                }
                
                hop_evidence.append(evidence_piece)
                new_entities.update(result['entities'])
                
        # Update reasoning state
        state['evidence'].extend(hop_evidence)
        state['reasoning_path'].append({
            'hop': hop_number,
            'questions': reasoning_questions,
            'entities_explored': current_entities,
            'new_entities_found': list(new_entities)
        })
        
        # Determine if reasoning should continue
        continue_reasoning = await self._should_continue_reasoning(
            state, new_entities, hop_number
        )
        
        if continue_reasoning:
            state['current_entities'] = list(new_entities)
            
        return {
            'updated_state': state,
            'continue_reasoning': continue_reasoning
        }
        
    async def _generate_hop_questions(self, original_query: str,
                                    reasoning_path: List[Dict],
                                    current_entities: List[str],
                                    hop_number: int) -> List[str]:
        """Generate questions for current reasoning hop"""
        
        context = f"""
        Original query: {original_query}
        Current reasoning hop: {hop_number + 1}
        Current entities: {current_entities}
        Previous reasoning: {reasoning_path}
        
        Generate 2-3 specific questions that would help answer the original query
        by exploring relationships and properties of the current entities.
        Focus on finding connections that lead toward the answer.
        """
        
        response = await self.llm.generate(
            prompt=context,
            max_tokens=200,
            temperature=0.3
        )
        
        # Extract questions from response
        questions = self._extract_questions_from_text(response)
        return questions[:3]  # Limit to 3 questions per hop
        
    async def _synthesize_answer(self, reasoning_state: Dict) -> str:
        """Synthesize final answer from reasoning evidence"""
        
        synthesis_prompt = f"""
        Original Question: {reasoning_state['original_query']}
        
        Reasoning Path: {reasoning_state['reasoning_path']}
        
        Evidence Collected:
        """
        
        for evidence in reasoning_state['evidence']:
            synthesis_prompt += f"- {evidence['fact']} (Confidence: {evidence['confidence']:.2f})\n"
            
        synthesis_prompt += """
        
        Based on this multi-hop reasoning through the knowledge graph,
        provide a comprehensive answer to the original question.
        Include confidence indicators and cite the evidence used.
        """
        
        answer = await self.llm.generate(
            prompt=synthesis_prompt,
            max_tokens=500,
            temperature=0.2
        )
        
        return answer

Adaptive RAG

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import mlflow
from sklearn.metrics import accuracy_score, f1_score
import numpy as np
from typing import Dict, List, Tuple

class AdaptiveRAGSystem:
    def __init__(self, base_retrieval_system):
        self.base_system = base_retrieval_system
        self.performance_tracker = PerformanceTracker()
        self.strategy_optimizer = StrategyOptimizer()
        self.feedback_collector = FeedbackCollector()
        
    async def adaptive_retrieve(self, query: str, 
                              context: Dict[str, Any]) -> List[SearchResult]:
        """Adaptively select and execute retrieval strategy"""
        
        # Analyze query and context
        query_features = await self._extract_query_features(query, context)
        
        # Select optimal strategy based on learned patterns
        strategy_config = await self.strategy_optimizer.select_strategy(
            query_features
        )
        
        # Execute retrieval with selected strategy
        with self.performance_tracker.track_retrieval(query, strategy_config):
            results = await self.base_system.search(
                query=query,
                top_k=strategy_config['top_k'],
                search_strategies=strategy_config['strategies'],
                retrieval_params=strategy_config['params']
            )
            
        # Post-process results based on learned preferences
        optimized_results = await self._post_process_results(
            results, query_features, strategy_config
        )
        
        return optimized_results
        
    async def learn_from_feedback(self, query: str, results: List[SearchResult],
                                user_feedback: Dict[str, Any]):
        """Learn from user feedback to improve future retrievals"""
        
        # Collect feedback
        feedback_record = {
            'query': query,
            'results': results,
            'user_feedback': user_feedback,
            'timestamp': datetime.utcnow().isoformat(),
            'query_features': await self._extract_query_features(query, {})
        }
        
        await self.feedback_collector.store_feedback(feedback_record)
        
        # Update strategy optimization models
        if len(await self.feedback_collector.get_recent_feedback(100)) >= 100:
            await self.strategy_optimizer.retrain()
            
    async def _extract_query_features(self, query: str, 
                                    context: Dict[str, Any]) -> Dict[str, float]:
        """Extract features for strategy selection"""
        features = {
            'query_length': len(query.split()),
            'has_entities': len(await self._extract_entities(query)) > 0,
            'complexity_score': self._calculate_complexity(query),
            'domain_specificity': await self._calculate_domain_specificity(query),
            'temporal_aspect': self._has_temporal_aspect(query),
            'user_expertise': context.get('user_expertise_level', 0.5),
            'task_type': self._classify_task_type(query),
            'urgency': context.get('urgency_level', 0.5)
        }
        
        return features
        
class StrategyOptimizer:
    def __init__(self):
        self.model = None
        self.strategy_performance = {}
        self.mlflow_client = mlflow.tracking.MlflowClient()
        
    async def select_strategy(self, query_features: Dict[str, float]) -> Dict[str, Any]:
        """Select optimal retrieval strategy based on query features"""
        
        if self.model is None:
            # Use default strategy
            return self._get_default_strategy()
            
        # Predict optimal strategy
        feature_vector = np.array(list(query_features.values())).reshape(1, -1)
        strategy_scores = self.model.predict_proba(feature_vector)[0]
        
        # Select strategy with highest predicted success
        best_strategy_idx = np.argmax(strategy_scores)
        
        strategy_configs = [
            {  # Strategy 0: Semantic-focused
                'strategies': ['semantic', 'hyde'],
                'top_k': 15,
                'params': {'semantic_weight': 0.8, 'keyword_weight': 0.2}
            },
            {  # Strategy 1: Keyword-focused
                'strategies': ['keyword', 'phrase'],
                'top_k': 20,
                'params': {'semantic_weight': 0.3, 'keyword_weight': 0.7}
            },
            {  # Strategy 2: Graph-focused
                'strategies': ['graph', 'semantic'],
                'top_k': 12,
                'params': {'max_hops': 2, 'semantic_weight': 0.6}
            },
            {  # Strategy 3: Hybrid balanced
                'strategies': ['semantic', 'keyword', 'graph'],
                'top_k': 18,
                'params': {'semantic_weight': 0.5, 'keyword_weight': 0.3, 'graph_weight': 0.2}
            }
        ]
        
        return strategy_configs[best_strategy_idx]
        
    async def retrain(self):
        """Retrain strategy selection model"""
        # Load training data from feedback
        training_data = await self._prepare_training_data()
        
        if len(training_data) < 50:
            return  # Need more data
            
        # Start MLflow run
        with mlflow.start_run():
            # Train model
            from sklearn.ensemble import RandomForestClassifier
            
            X, y = training_data['features'], training_data['labels']
            
            model = RandomForestClassifier(
                n_estimators=100,
                max_depth=10,
                random_state=42
            )
            
            model.fit(X, y)
            
            # Evaluate model
            y_pred = model.predict(X)
            accuracy = accuracy_score(y, y_pred)
            f1 = f1_score(y, y_pred, average='weighted')
            
            # Log metrics
            mlflow.log_metric("accuracy", accuracy)
            mlflow.log_metric("f1_score", f1)
            
            # Log model
            mlflow.sklearn.log_model(model, "strategy_optimizer")
            
            # Update current model
            self.model = model
            
            return {
                'accuracy': accuracy,
                'f1_score': f1,
                'training_samples': len(training_data)
            }

Cross-lingual Retrieval

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from transformers import MarianMTModel, MarianTokenizer
import torch

class CrossLingualRAG:
    def __init__(self, supported_languages: List[str]):
        self.supported_languages = supported_languages
        self.translation_models = {}
        self.multilingual_embedder = MultilingualEmbedder()
        self.language_detector = LanguageDetector()
        
        # Load translation models
        self._load_translation_models()
        
    def _load_translation_models(self):
        """Load translation models for supported languages"""
        for lang in self.supported_languages:
            if lang != 'en':  # Assuming English as pivot language
                # To English
                model_name = f"Helsinki-NLP/opus-mt-{lang}-en"
                self.translation_models[f"{lang}-en"] = {
                    'model': MarianMTModel.from_pretrained(model_name),
                    'tokenizer': MarianTokenizer.from_pretrained(model_name)
                }
                
                # From English
                model_name = f"Helsinki-NLP/opus-mt-en-{lang}"
                self.translation_models[f"en-{lang}"] = {
                    'model': MarianMTModel.from_pretrained(model_name),
                    'tokenizer': MarianTokenizer.from_pretrained(model_name)
                }
                
    async def cross_lingual_search(self, query: str, 
                                 target_languages: List[str] = None) -> List[SearchResult]:
        """Perform cross-lingual retrieval"""
        
        # Detect query language
        query_lang = await self.language_detector.detect(query)
        
        if target_languages is None:
            target_languages = self.supported_languages
            
        # Translate query to all target languages
        translated_queries = {}
        
        if query_lang != 'en':
            # Translate to English first
            english_query = await self._translate(query, query_lang, 'en')
            translated_queries['en'] = english_query
        else:
            translated_queries['en'] = query
            
        # Translate to other target languages
        for lang in target_languages:
            if lang != query_lang and lang != 'en':
                if query_lang == 'en':
                    translated_queries[lang] = await self._translate(query, 'en', lang)
                else:
                    # Use English as pivot
                    translated_queries[lang] = await self._translate(
                        translated_queries['en'], 'en', lang
                    )
                    
        # Perform retrieval in multiple languages
        all_results = []
        
        for lang, translated_query in translated_queries.items():
            # Search in language-specific collections
            lang_results = await self._search_in_language(
                translated_query, lang
            )
            
            # Translate results back to query language if needed
            if lang != query_lang:
                lang_results = await self._translate_results(
                    lang_results, lang, query_lang
                )
                
            all_results.extend(lang_results)
            
        # Merge and rank cross-lingual results
        merged_results = await self._merge_cross_lingual_results(
            all_results, query, query_lang
        )
        
        return merged_results
        
    async def _translate(self, text: str, source_lang: str, target_lang: str) -> str:
        """Translate text between languages"""
        model_key = f"{source_lang}-{target_lang}"
        
        if model_key not in self.translation_models:
            # Use English as pivot
            if source_lang != 'en':
                english_text = await self._translate(text, source_lang, 'en')
                return await self._translate(english_text, 'en', target_lang)
            else:
                raise ValueError(f"Translation model not found: {model_key}")
                
        model_info = self.translation_models[model_key]
        model = model_info['model']
        tokenizer = model_info['tokenizer']
        
        # Tokenize
        inputs = tokenizer.encode(text, return_tensors="pt", truncation=True)
        
        # Generate translation
        with torch.no_grad():
            outputs = model.generate(inputs, max_length=512, num_beams=4)
            
        # Decode
        translated = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        return translated

Multimodal RAG

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from PIL import Image
import torch
from transformers import CLIPModel, CLIPProcessor

class MultimodalRAG:
    def __init__(self, vector_store, image_processor):
        self.vector_store = vector_store
        self.image_processor = image_processor
        self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
        self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
        
    async def multimodal_search(self, query: str, 
                              query_image: Optional[Image.Image] = None,
                              modalities: List[str] = None) -> List[SearchResult]:
        """Search across multiple modalities"""
        
        if modalities is None:
            modalities = ['text', 'image', 'video', 'audio']
            
        search_tasks = []
        
        # Text search
        if 'text' in modalities:
            search_tasks.append(self._text_search(query))
            
        # Image search
        if 'image' in modalities:
            if query_image is not None:
                search_tasks.append(self._image_search(query_image, query))
            else:
                # Generate image from text query
                image_query_embedding = await self._text_to_image_embedding(query)
                search_tasks.append(self._image_embedding_search(image_query_embedding))
                
        # Video search
        if 'video' in modalities:
            search_tasks.append(self._video_search(query, query_image))
            
        # Audio search (if query contains audio-related terms)
        if 'audio' in modalities and self._is_audio_query(query):
            search_tasks.append(self._audio_search(query))
            
        # Execute all searches
        search_results = await asyncio.gather(*search_tasks)
        
        # Combine and rank multimodal results
        all_results = []
        for results in search_results:
            all_results.extend(results)
            
        # Apply cross-modal relevance scoring
        ranked_results = await self._rank_multimodal_results(
            query, query_image, all_results
        )
        
        return ranked_results
        
    async def _text_to_image_embedding(self, text: str) -> np.ndarray:
        """Convert text query to image embedding space"""
        inputs = self.clip_processor(text=[text], return_tensors="pt", padding=True)
        
        with torch.no_grad():
            text_features = self.clip_model.get_text_features(**inputs)
            
        return text_features.numpy()[0]
        
    async def _image_search(self, query_image: Image.Image, 
                          text_query: str = "") -> List[SearchResult]:
        """Search for similar images"""
        # Extract image features
        inputs = self.clip_processor(images=query_image, return_tensors="pt")
        
        with torch.no_grad():
            image_features = self.clip_model.get_image_features(**inputs)
            
        image_embedding = image_features.numpy()[0]
        
        # Search image vector store
        results = await self.vector_store.similarity_search(
            embedding=image_embedding,
            collection='images',
            top_k=20
        )
        
        search_results = []
        for result in results:
            search_results.append(SearchResult(
                content=result['description'],
                score=result['score'],
                source=result['image_path'],
                metadata={
                    'modality': 'image',
                    'image_path': result['image_path'],
                    'image_features': result.get('features', {}),
                    'extracted_text': result.get('ocr_text', '')
                },
                retrieval_method='multimodal_image'
            ))
            
        return search_results
        
    async def _video_search(self, query: str, 
                          query_image: Optional[Image.Image] = None) -> List[SearchResult]:
        """Search video content using multiple strategies"""
        search_strategies = []
        
        # Text-based video search (transcripts, metadata)
        search_strategies.append(
            self.vector_store.similarity_search(
                query=query,
                collection='video_transcripts',
                top_k=15
            )
        )
        
        # Visual similarity search if image provided
        if query_image is not None:
            # Extract keyframes and compare
            image_embedding = await self._extract_image_embedding(query_image)
            search_strategies.append(
                self.vector_store.similarity_search(
                    embedding=image_embedding,
                    collection='video_keyframes',
                    top_k=10
                )
            )
            
        # Audio similarity search for videos with speech
        audio_query_embedding = await self._text_to_audio_embedding(query)
        search_strategies.append(
            self.vector_store.similarity_search(
                embedding=audio_query_embedding,
                collection='video_audio',
                top_k=10
            )
        )
        
        # Combine video search results
        all_video_results = await asyncio.gather(*search_strategies)
        
        # Merge and deduplicate by video ID
        video_results_map = {}
        
        for strategy_results in all_video_results:
            for result in strategy_results:
                video_id = result['video_id']
                
                if video_id not in video_results_map:
                    video_results_map[video_id] = SearchResult(
                        content=result['transcript_excerpt'],
                        score=result['score'],
                        source=result['video_path'],
                        metadata={
                            'modality': 'video',
                            'video_id': video_id,
                            'timestamp': result.get('timestamp', 0),
                            'keyframe_matches': [],
                            'audio_matches': []
                        },
                        retrieval_method='multimodal_video'
                    )
                else:
                    # Boost score for multiple matches
                    video_results_map[video_id].score += result['score'] * 0.3
                    
                # Add specific match information
                if 'keyframe' in result:
                    video_results_map[video_id].metadata['keyframe_matches'].append({
                        'timestamp': result['timestamp'],
                        'similarity': result['score']
                    })
                    
        return list(video_results_map.values())

Performance Optimization

Caching & Memoization

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import hashlib
import pickle
from functools import wraps
import redis
from typing import Optional, Callable, Any

class RAGCacheManager:
    def __init__(self, redis_client: redis.Redis, 
                 default_ttl: int = 3600):
        self.redis = redis_client
        self.default_ttl = default_ttl
        self.cache_stats = {
            'hits': 0,
            'misses': 0,
            'invalidations': 0
        }
        
    def cached_retrieval(self, ttl: Optional[int] = None):
        """Decorator for caching retrieval results"""
        def decorator(func: Callable) -> Callable:
            @wraps(func)
            async def wrapper(*args, **kwargs):
                # Generate cache key
                cache_key = self._generate_cache_key(func.__name__, args, kwargs)
                
                # Try to get from cache
                cached_result = self._get_cached_result(cache_key)
                if cached_result is not None:
                    self.cache_stats['hits'] += 1
                    return cached_result
                    
                # Execute function
                result = await func(*args, **kwargs)
                
                # Cache result
                self._cache_result(cache_key, result, ttl or self.default_ttl)
                self.cache_stats['misses'] += 1
                
                return result
                
            return wrapper
        return decorator
        
    def _generate_cache_key(self, func_name: str, args: tuple, kwargs: dict) -> str:
        """Generate deterministic cache key"""
        # Create hashable representation
        key_data = {
            'function': func_name,
            'args': args,
            'kwargs': sorted(kwargs.items())
        }
        
        # Hash the key data
        key_string = pickle.dumps(key_data, protocol=pickle.HIGHEST_PROTOCOL)
        key_hash = hashlib.sha256(key_string).hexdigest()
        
        return f"rag_cache:{func_name}:{key_hash}"
        
    def _get_cached_result(self, cache_key: str) -> Optional[Any]:
        """Retrieve cached result"""
        try:
            cached_data = self.redis.get(cache_key)
            if cached_data:
                return pickle.loads(cached_data)
        except Exception as e:
            # Log error but don't fail
            print(f"Cache retrieval error: {e}")
            
        return None
        
    def _cache_result(self, cache_key: str, result: Any, ttl: int):
        """Cache result with TTL"""
        try:
            serialized_result = pickle.dumps(result, protocol=pickle.HIGHEST_PROTOCOL)
            self.redis.setex(cache_key, ttl, serialized_result)
        except Exception as e:
            # Log error but don't fail
            print(f"Cache storage error: {e}")
            
    def invalidate_pattern(self, pattern: str):
        """Invalidate cache entries matching pattern"""
        try:
            keys = list(self.redis.scan_iter(match=f"rag_cache:*{pattern}*"))
            if keys:
                self.redis.delete(*keys)
                self.cache_stats['invalidations'] += len(keys)
        except Exception as e:
            print(f"Cache invalidation error: {e}")

Query Optimization

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
class QueryOptimizer:
    def __init__(self):
        self.query_patterns = {}
        self.optimization_rules = [
            self._optimize_entity_queries,
            self._optimize_temporal_queries,
            self._optimize_complex_queries,
            self._optimize_similarity_thresholds
        ]
        
    async def optimize_query(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Apply optimization rules to query"""
        
        optimized_config = {
            'original_query': query,
            'optimized_query': query,
            'search_params': {
                'top_k': 10,
                'similarity_threshold': 0.7,
                'max_hops': 2
            },
            'strategy_weights': {
                'semantic': 0.6,
                'keyword': 0.3,
                'graph': 0.1
            }
        }
        
        # Apply optimization rules
        for rule in self.optimization_rules:
            optimized_config = await rule(optimized_config, context)
            
        return optimized_config
        
    async def _optimize_entity_queries(self, config: Dict, context: Dict) -> Dict:
        """Optimize queries with many entities"""
        query = config['optimized_query']
        entities = await self._extract_entities(query)
        
        if len(entities) > 3:
            # Boost graph search for entity-heavy queries
            config['strategy_weights']['graph'] = 0.4
            config['strategy_weights']['semantic'] = 0.4
            config['strategy_weights']['keyword'] = 0.2
            
            # Increase max hops for exploration
            config['search_params']['max_hops'] = 3
            
            # Lower similarity threshold to catch more connections
            config['search_params']['similarity_threshold'] = 0.6
            
        return config
        
    async def _optimize_temporal_queries(self, config: Dict, context: Dict) -> Dict:
        """Optimize time-sensitive queries"""
        query = config['optimized_query']
        
        temporal_indicators = ['recent', 'latest', 'current', 'today', 'yesterday', 'last']
        
        if any(indicator in query.lower() for indicator in temporal_indicators):
            # Add recency boost to search parameters
            config['search_params']['recency_boost'] = True
            config['search_params']['time_decay_factor'] = 0.1
            
            # Increase top_k to get more recent results
            config['search_params']['top_k'] = 15
            
        return config
        
    async def _optimize_similarity_thresholds(self, config: Dict, context: Dict) -> Dict:
        """Dynamically adjust similarity thresholds"""
        query_complexity = context.get('query_complexity', 0.5)
        user_expertise = context.get('user_expertise', 0.5)
        
        # Adjust threshold based on complexity and expertise
        base_threshold = config['search_params']['similarity_threshold']
        
        # Complex queries may need lower threshold for broader search
        complexity_adjustment = -0.1 * query_complexity
        
        # Expert users may want more precise results
        expertise_adjustment = 0.1 * user_expertise
        
        new_threshold = base_threshold + complexity_adjustment + expertise_adjustment
        new_threshold = max(0.4, min(0.9, new_threshold))  # Clamp to reasonable range
        
        config['search_params']['similarity_threshold'] = new_threshold
        
        return config

Monitoring & Analytics

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import structlog
from prometheus_client import Counter, Histogram, Gauge
from datetime import datetime, timedelta

class RAGAnalytics:
    def __init__(self):
        # Prometheus metrics
        self.query_count = Counter(
            'rag_queries_total',
            'Total RAG queries',
            ['query_type', 'strategy', 'status']
        )
        
        self.retrieval_latency = Histogram(
            'rag_retrieval_duration_seconds',
            'RAG retrieval duration',
            ['strategy', 'complexity_level']
        )
        
        self.context_utilization = Gauge(
            'rag_context_utilization_ratio',
            'Context utilization ratio',
            ['strategy']
        )
        
        self.answer_quality_score = Histogram(
            'rag_answer_quality_score',
            'RAG answer quality score',
            ['strategy', 'query_type']
        )
        
        # Structured logging
        self.logger = structlog.get_logger()
        
    async def track_query_execution(self, query: str, strategy: str,
                                  execution_time: float, results: List[SearchResult],
                                  quality_score: Optional[float] = None):
        """Track query execution metrics"""
        
        # Classify query
        query_type = await self._classify_query(query)
        complexity_level = self._calculate_complexity_level(query)
        
        # Update metrics
        self.query_count.labels(
            query_type=query_type,
            strategy=strategy,
            status='success'
        ).inc()
        
        self.retrieval_latency.labels(
            strategy=strategy,
            complexity_level=complexity_level
        ).observe(execution_time)
        
        if quality_score is not None:
            self.answer_quality_score.labels(
                strategy=strategy,
                query_type=query_type
            ).observe(quality_score)
            
        # Log detailed information
        self.logger.info(
            "rag_query_executed",
            query=query,
            query_type=query_type,
            strategy=strategy,
            execution_time=execution_time,
            result_count=len(results),
            quality_score=quality_score,
            complexity_level=complexity_level
        )
        
    async def analyze_retrieval_effectiveness(self, 
                                           time_window_hours: int = 24) -> Dict[str, Any]:
        """Analyze retrieval effectiveness over time window"""
        
        # This would typically query your metrics backend
        # Showing conceptual analysis structure
        
        analysis = {
            'time_window': f"{time_window_hours}h",
            'total_queries': await self._count_queries(time_window_hours),
            'average_latency': await self._average_latency(time_window_hours),
            'strategy_performance': await self._strategy_performance(time_window_hours),
            'quality_trends': await self._quality_trends(time_window_hours),
            'optimization_recommendations': []
        }
        
        # Generate recommendations
        if analysis['average_latency'] > 2.0:  # seconds
            analysis['optimization_recommendations'].append({
                'type': 'performance',
                'message': 'Consider adding caching or reducing top_k values',
                'priority': 'high'
            })
            
        if analysis['strategy_performance'].get('semantic', {}).get('success_rate', 0) < 0.7:
            analysis['optimization_recommendations'].append({
                'type': 'accuracy',
                'message': 'Semantic search performance is low, consider retraining embeddings',
                'priority': 'medium'
            })
            
        return analysis
        
    def generate_insights_report(self, period_days: int = 7) -> str:
        """Generate comprehensive insights report"""
        
        report = f"""
        # RAG System Performance Report
        ## Period: Last {period_days} days
        
        ### Key Metrics
        - Total Queries: {self._get_metric_value('rag_queries_total', period_days)}
        - Average Latency: {self._get_metric_value('rag_retrieval_duration_seconds', period_days):.2f}s
        - Success Rate: {self._calculate_success_rate(period_days):.1%}
        
        ### Strategy Performance
        """
        
        strategies = ['semantic', 'keyword', 'graph', 'hybrid']
        for strategy in strategies:
            perf = self._get_strategy_performance(strategy, period_days)
            report += f"""
        #### {strategy.title()} Strategy
        - Queries: {perf['count']}
        - Avg Latency: {perf['latency']:.2f}s
        - Quality Score: {perf['quality']:.2f}
        """
        
        report += """
        ### Recommendations
        """
        
        recommendations = self._generate_recommendations(period_days)
        for rec in recommendations:
            report += f"- {rec}\n"
            
        return report

Next Steps

The RAG & GraphRAG component provides the intelligence layer that transforms static knowledge into dynamic, contextual responses, enabling your AI systems to provide accurate, relevant, and up-to-date information to users.