Knowledge Management

Knowledge Management

The Knowledge Management component automatically extracts, validates, and curates knowledge from diverse data sources, transforming raw information into structured, actionable intelligence that powers the AIMatrix platform’s decision-making capabilities.

Architecture Overview

  graph TB
    A[Data Sources] --> B[Knowledge Extraction]
    B --> C[Entity Recognition & Linking]
    C --> D[Relationship Mapping]
    D --> E[Knowledge Validation]
    E --> F[Knowledge Curation]
    F --> G[Knowledge Storage]
    
    subgraph "Extraction Layer"
        B1[NLP Pipeline]
        B2[Computer Vision]
        B3[Audio Processing]
        B4[Structured Data]
    end
    
    subgraph "Processing Layer"
        C1[Named Entity Recognition]
        C2[Entity Linking]
        C3[Coreference Resolution]
        D1[Relation Extraction]
        D2[Event Detection]
        D3[Temporal Reasoning]
    end
    
    subgraph "Validation Layer"
        E1[Fact Verification]
        E2[Source Credibility]
        E3[Consistency Checking]
        E4[Confidence Scoring]
    end
    
    subgraph "Knowledge Graphs"
        G --> H[Temporal Knowledge Graph]
        G --> I[Multi-modal Knowledge Base]
        G --> J[Domain Ontologies]
    end

Automated Knowledge Extraction

Multi-modal NLP Pipeline

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
from transformers import (
    AutoTokenizer, AutoModelForTokenClassification,
    AutoModelForQuestionAnswering, pipeline
)
import spacy
from typing import List, Dict, Any, Tuple
import asyncio

class KnowledgeExtractor:
    def __init__(self, model_config: Dict[str, str]):
        # Load NLP models
        self.nlp = spacy.load("en_core_web_trf")
        
        # Named Entity Recognition
        self.ner_tokenizer = AutoTokenizer.from_pretrained(
            model_config.get('ner_model', 'dbmdz/bert-large-cased-finetuned-conll03-english')
        )
        self.ner_model = AutoModelForTokenClassification.from_pretrained(
            model_config.get('ner_model', 'dbmdz/bert-large-cased-finetuned-conll03-english')
        )
        
        # Relation Extraction
        self.relation_extractor = pipeline(
            "text-classification",
            model=model_config.get('relation_model', 'sentence-transformers/all-MiniLM-L6-v2')
        )
        
        # Question Answering for knowledge validation
        self.qa_pipeline = pipeline(
            "question-answering",
            model=model_config.get('qa_model', 'deepset/roberta-base-squad2')
        )
        
        # Initialize extractors for different modalities
        self.text_extractor = TextKnowledgeExtractor()
        self.image_extractor = ImageKnowledgeExtractor()
        self.audio_extractor = AudioKnowledgeExtractor()
        
    async def extract_knowledge(self, content: Dict[str, Any]) -> Dict[str, Any]:
        """Extract knowledge from multi-modal content"""
        
        knowledge = {
            'entities': [],
            'relations': [],
            'events': [],
            'facts': [],
            'metadata': {
                'extraction_timestamp': datetime.utcnow().isoformat(),
                'confidence_scores': {},
                'source_info': content.get('source', {})
            }
        }
        
        extraction_tasks = []
        
        # Text extraction
        if 'text' in content:
            extraction_tasks.append(
                self.text_extractor.extract(content['text'])
            )
            
        # Image extraction
        if 'images' in content:
            for image in content['images']:
                extraction_tasks.append(
                    self.image_extractor.extract(image)
                )
                
        # Audio extraction
        if 'audio' in content:
            extraction_tasks.append(
                self.audio_extractor.extract(content['audio'])
            )
            
        # Execute extractions in parallel
        extraction_results = await asyncio.gather(*extraction_tasks)
        
        # Merge results
        for result in extraction_results:
            knowledge['entities'].extend(result.get('entities', []))
            knowledge['relations'].extend(result.get('relations', []))
            knowledge['events'].extend(result.get('events', []))
            knowledge['facts'].extend(result.get('facts', []))
            
        # Post-process and validate
        knowledge = await self._post_process_knowledge(knowledge)
        
        return knowledge
        
    async def _post_process_knowledge(self, knowledge: Dict) -> Dict:
        """Post-process extracted knowledge"""
        
        # Deduplicate entities
        knowledge['entities'] = self._deduplicate_entities(knowledge['entities'])
        
        # Resolve coreferences
        knowledge = await self._resolve_coreferences(knowledge)
        
        # Validate facts
        knowledge['facts'] = await self._validate_facts(knowledge['facts'])
        
        # Calculate confidence scores
        knowledge['metadata']['confidence_scores'] = self._calculate_confidence_scores(knowledge)
        
        return knowledge

class TextKnowledgeExtractor:
    def __init__(self):
        self.entity_recognizer = EntityRecognizer()
        self.relation_extractor = RelationExtractor()
        self.event_detector = EventDetector()
        self.fact_extractor = FactExtractor()
        
    async def extract(self, text: str) -> Dict[str, Any]:
        """Extract knowledge from text"""
        
        # Parallel extraction of different knowledge types
        extraction_tasks = [
            self.entity_recognizer.recognize(text),
            self.relation_extractor.extract(text),
            self.event_detector.detect(text),
            self.fact_extractor.extract(text)
        ]
        
        entities, relations, events, facts = await asyncio.gather(*extraction_tasks)
        
        return {
            'entities': entities,
            'relations': relations,
            'events': events,
            'facts': facts,
            'source_type': 'text'
        }

class EntityRecognizer:
    def __init__(self):
        # Load multiple NER models for ensemble
        self.models = {
            'spacy': spacy.load("en_core_web_trf"),
            'transformers': pipeline("ner", 
                model="dbmdz/bert-large-cased-finetuned-conll03-english",
                aggregation_strategy="simple"
            ),
            'custom_domain': None  # Domain-specific model placeholder
        }
        
        self.entity_linker = EntityLinker()
        
    async def recognize(self, text: str) -> List[Dict[str, Any]]:
        """Recognize and link entities from text"""
        
        # Extract entities using multiple models
        entity_sets = {}
        
        # SpaCy NER
        spacy_doc = self.models['spacy'](text)
        entity_sets['spacy'] = [
            {
                'text': ent.text,
                'label': ent.label_,
                'start': ent.start_char,
                'end': ent.end_char,
                'confidence': 1.0 - (ent.start / len(text))  # Simple confidence heuristic
            }
            for ent in spacy_doc.ents
        ]
        
        # Transformers NER
        transformers_entities = self.models['transformers'](text)
        entity_sets['transformers'] = [
            {
                'text': entity['word'],
                'label': entity['entity_group'],
                'start': entity['start'],
                'end': entity['end'],
                'confidence': entity['score']
            }
            for entity in transformers_entities
        ]
        
        # Ensemble entity recognition
        merged_entities = self._merge_entity_predictions(entity_sets)
        
        # Link entities to knowledge base
        linked_entities = []
        for entity in merged_entities:
            linked_entity = await self.entity_linker.link(entity, text)
            linked_entities.append(linked_entity)
            
        return linked_entities
        
    def _merge_entity_predictions(self, entity_sets: Dict[str, List[Dict]]) -> List[Dict]:
        """Merge predictions from multiple NER models"""
        
        merged_entities = []
        all_entities = []
        
        # Collect all entities
        for model_name, entities in entity_sets.items():
            for entity in entities:
                entity['source_model'] = model_name
                all_entities.append(entity)
                
        # Group overlapping entities
        entity_groups = self._group_overlapping_entities(all_entities)
        
        # Resolve conflicts in each group
        for group in entity_groups:
            if len(group) == 1:
                merged_entities.append(group[0])
            else:
                # Use voting or confidence-based resolution
                resolved_entity = self._resolve_entity_conflict(group)
                merged_entities.append(resolved_entity)
                
        return merged_entities
        
    def _resolve_entity_conflict(self, conflicting_entities: List[Dict]) -> Dict:
        """Resolve conflicts between overlapping entity predictions"""
        
        # Simple strategy: use highest confidence
        best_entity = max(conflicting_entities, key=lambda x: x['confidence'])
        
        # Add ensemble information
        best_entity['ensemble_info'] = {
            'agreement_count': len(conflicting_entities),
            'conflicting_labels': [e['label'] for e in conflicting_entities],
            'average_confidence': sum(e['confidence'] for e in conflicting_entities) / len(conflicting_entities)
        }
        
        return best_entity

class EntityLinker:
    def __init__(self):
        self.knowledge_bases = {
            'wikidata': WikidataLinker(),
            'dbpedia': DBpediaLinker(), 
            'company_kb': CompanyKnowledgeBase(),
            'domain_kb': DomainKnowledgeBase()
        }
        
    async def link(self, entity: Dict[str, Any], context: str) -> Dict[str, Any]:
        """Link entity to knowledge bases"""
        
        linking_tasks = []
        
        for kb_name, kb in self.knowledge_bases.items():
            linking_tasks.append(
                kb.find_candidates(entity['text'], entity['label'], context)
            )
            
        # Get candidates from all knowledge bases
        all_candidates = await asyncio.gather(*linking_tasks)
        
        # Rank and select best candidate
        best_candidate = self._select_best_candidate(entity, all_candidates, context)
        
        # Enhance entity with linked information
        linked_entity = {
            **entity,
            'linked_entity': best_candidate,
            'entity_id': best_candidate['id'] if best_candidate else None,
            'entity_type': best_candidate['type'] if best_candidate else entity['label'],
            'properties': best_candidate.get('properties', {}),
            'aliases': best_candidate.get('aliases', [])
        }
        
        return linked_entity
        
    def _select_best_candidate(self, entity: Dict, candidate_lists: List[List], 
                             context: str) -> Optional[Dict]:
        """Select the best entity candidate across knowledge bases"""
        
        all_candidates = []
        for candidates in candidate_lists:
            all_candidates.extend(candidates)
            
        if not all_candidates:
            return None
            
        # Score candidates
        for candidate in all_candidates:
            candidate['linking_score'] = self._calculate_linking_score(
                entity, candidate, context
            )
            
        # Return highest scoring candidate above threshold
        best_candidate = max(all_candidates, key=lambda x: x['linking_score'])
        
        if best_candidate['linking_score'] > 0.7:  # Configurable threshold
            return best_candidate
            
        return None
        
    def _calculate_linking_score(self, entity: Dict, candidate: Dict, context: str) -> float:
        """Calculate entity linking confidence score"""
        
        scores = []
        
        # String similarity
        string_sim = self._string_similarity(entity['text'], candidate['label'])
        scores.append(string_sim * 0.4)
        
        # Context similarity
        if 'description' in candidate:
            context_sim = self._context_similarity(context, candidate['description'])
            scores.append(context_sim * 0.3)
            
        # Type consistency
        type_consistency = self._type_consistency(entity['label'], candidate.get('type', ''))
        scores.append(type_consistency * 0.2)
        
        # Popularity/frequency
        popularity = candidate.get('popularity_score', 0.5)
        scores.append(popularity * 0.1)
        
        return sum(scores)

Relationship Mapping

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import networkx as nx
from typing import Set, Tuple
from dataclasses import dataclass

@dataclass
class Relation:
    subject: str
    predicate: str
    object: str
    confidence: float
    context: str
    temporal_info: Optional[Dict[str, Any]] = None
    source: str = ""

class RelationshipMapper:
    def __init__(self):
        self.relation_patterns = self._load_relation_patterns()
        self.temporal_processor = TemporalProcessor()
        self.relation_validator = RelationValidator()
        
    async def map_relationships(self, entities: List[Dict], 
                              text: str) -> List[Relation]:
        """Extract and map relationships between entities"""
        
        relations = []
        
        # Pattern-based relation extraction
        pattern_relations = await self._extract_pattern_relations(entities, text)
        relations.extend(pattern_relations)
        
        # Dependency parsing relations
        dependency_relations = await self._extract_dependency_relations(entities, text)
        relations.extend(dependency_relations)
        
        # Neural relation extraction
        neural_relations = await self._extract_neural_relations(entities, text)
        relations.extend(neural_relations)
        
        # Temporal relation extraction
        temporal_relations = await self.temporal_processor.extract_temporal_relations(
            entities, text
        )
        relations.extend(temporal_relations)
        
        # Validate and filter relations
        validated_relations = []
        for relation in relations:
            if await self.relation_validator.validate(relation, text):
                validated_relations.append(relation)
                
        # Deduplicate relations
        unique_relations = self._deduplicate_relations(validated_relations)
        
        return unique_relations
        
    async def _extract_pattern_relations(self, entities: List[Dict], text: str) -> List[Relation]:
        """Extract relations using predefined patterns"""
        
        relations = []
        entity_mentions = {ent['text']: ent for ent in entities}
        
        for pattern in self.relation_patterns:
            matches = pattern['regex'].finditer(text)
            
            for match in matches:
                groups = match.groups()
                
                if len(groups) >= 2:
                    subject_text = groups[0].strip()
                    object_text = groups[1].strip()
                    
                    # Find matching entities
                    subject_entity = self._find_entity_match(subject_text, entity_mentions)
                    object_entity = self._find_entity_match(object_text, entity_mentions)
                    
                    if subject_entity and object_entity:
                        relation = Relation(
                            subject=subject_entity['entity_id'] or subject_text,
                            predicate=pattern['relation_type'],
                            object=object_entity['entity_id'] or object_text,
                            confidence=pattern['confidence'],
                            context=match.group(),
                            source='pattern_based'
                        )
                        relations.append(relation)
                        
        return relations
        
    async def _extract_neural_relations(self, entities: List[Dict], text: str) -> List[Relation]:
        """Extract relations using neural models"""
        
        relations = []
        
        # Use pre-trained relation extraction model
        from transformers import pipeline
        
        relation_extractor = pipeline(
            "text2text-generation",
            model="Babelscape/rebel-large"
        )
        
        # Generate relation triples
        generated_relations = relation_extractor(text)
        
        # Parse and validate generated relations
        for generated in generated_relations:
            parsed_relations = self._parse_rebel_output(generated['generated_text'])
            
            for parsed_rel in parsed_relations:
                # Map to our entity IDs
                subject_entity = self._find_entity_by_text(parsed_rel['subject'], entities)
                object_entity = self._find_entity_by_text(parsed_rel['object'], entities)
                
                if subject_entity and object_entity:
                    relation = Relation(
                        subject=subject_entity['entity_id'] or parsed_rel['subject'],
                        predicate=parsed_rel['predicate'],
                        object=object_entity['entity_id'] or parsed_rel['object'],
                        confidence=0.8,  # Default confidence for neural extraction
                        context=text[:200],  # Context snippet
                        source='neural'
                    )
                    relations.append(relation)
                    
        return relations

class TemporalProcessor:
    def __init__(self):
        self.time_extractor = TimeExtractor()
        self.event_processor = EventProcessor()
        
    async def extract_temporal_relations(self, entities: List[Dict], 
                                       text: str) -> List[Relation]:
        """Extract temporal relationships and events"""
        
        temporal_relations = []
        
        # Extract time expressions
        time_expressions = await self.time_extractor.extract(text)
        
        # Extract events
        events = await self.event_processor.extract(text, entities)
        
        # Link events to time expressions
        for event in events:
            for time_expr in time_expressions:
                if self._are_temporally_related(event, time_expr, text):
                    temporal_relation = Relation(
                        subject=event['event_id'],
                        predicate='occurs_at',
                        object=time_expr['normalized_time'],
                        confidence=0.9,
                        context=f"{event['mention']} {time_expr['text']}",
                        temporal_info={
                            'time_type': time_expr['type'],
                            'granularity': time_expr['granularity'],
                            'absolute_time': time_expr['normalized_time']
                        },
                        source='temporal'
                    )
                    temporal_relations.append(temporal_relation)
                    
        # Extract event ordering relations
        event_sequences = self._extract_event_sequences(events, text)
        for sequence in event_sequences:
            for i in range(len(sequence) - 1):
                current_event = sequence[i]
                next_event = sequence[i + 1]
                
                temporal_relation = Relation(
                    subject=current_event['event_id'],
                    predicate='precedes',
                    object=next_event['event_id'],
                    confidence=0.8,
                    context=text,
                    temporal_info={'sequence_order': i},
                    source='temporal_sequence'
                )
                temporal_relations.append(temporal_relation)
                
        return temporal_relations
        
    def _extract_event_sequences(self, events: List[Dict], text: str) -> List[List[Dict]]:
        """Extract sequences of events from text"""
        
        # Sort events by position in text
        sorted_events = sorted(events, key=lambda x: x.get('start_pos', 0))
        
        sequences = []
        current_sequence = []
        
        sequence_indicators = ['then', 'next', 'after', 'subsequently', 'following']
        
        for event in sorted_events:
            # Check if this event continues a sequence
            if current_sequence:
                # Look for sequence indicators between events
                prev_event = current_sequence[-1]
                between_text = text[prev_event.get('end_pos', 0):event.get('start_pos', 0)]
                
                has_sequence_indicator = any(
                    indicator in between_text.lower() 
                    for indicator in sequence_indicators
                )
                
                if has_sequence_indicator or len(between_text.split()) < 10:  # Close proximity
                    current_sequence.append(event)
                else:
                    # Start new sequence
                    if len(current_sequence) > 1:
                        sequences.append(current_sequence)
                    current_sequence = [event]
            else:
                current_sequence = [event]
                
        # Add final sequence if exists
        if len(current_sequence) > 1:
            sequences.append(current_sequence)
            
        return sequences

Knowledge Validation & Fact Verification

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import asyncio
from typing import Optional, Union
from dataclasses import dataclass

@dataclass
class ValidationResult:
    is_valid: bool
    confidence: float
    evidence: List[str]
    contradictions: List[str]
    sources: List[str]

class KnowledgeValidator:
    def __init__(self):
        self.fact_checkers = {
            'cross_reference': CrossReferenceChecker(),
            'consistency': ConsistencyChecker(),
            'credibility': CredibilityChecker(),
            'temporal': TemporalConsistencyChecker()
        }
        
        self.validation_rules = ValidationRules()
        
    async def validate_knowledge(self, knowledge: Dict[str, Any]) -> Dict[str, ValidationResult]:
        """Validate extracted knowledge comprehensively"""
        
        validation_results = {}
        
        # Validate entities
        entity_validations = await self._validate_entities(knowledge['entities'])
        validation_results['entities'] = entity_validations
        
        # Validate relations
        relation_validations = await self._validate_relations(knowledge['relations'])
        validation_results['relations'] = relation_validations
        
        # Validate facts
        fact_validations = await self._validate_facts(knowledge['facts'])
        validation_results['facts'] = fact_validations
        
        # Cross-validation across knowledge types
        cross_validations = await self._cross_validate_knowledge(knowledge)
        validation_results['cross_validation'] = cross_validations
        
        return validation_results
        
    async def _validate_facts(self, facts: List[Dict]) -> List[ValidationResult]:
        """Validate individual facts"""
        
        validation_tasks = []
        
        for fact in facts:
            validation_tasks.append(self._validate_single_fact(fact))
            
        return await asyncio.gather(*validation_tasks)
        
    async def _validate_single_fact(self, fact: Dict) -> ValidationResult:
        """Validate a single fact using multiple strategies"""
        
        # Run all fact checkers in parallel
        checker_tasks = [
            checker.check(fact) 
            for checker in self.fact_checkers.values()
        ]
        
        checker_results = await asyncio.gather(*checker_tasks)
        
        # Combine results from different checkers
        combined_result = self._combine_validation_results(checker_results)
        
        return combined_result
        
    def _combine_validation_results(self, results: List[ValidationResult]) -> ValidationResult:
        """Combine multiple validation results"""
        
        # Weighted voting based on checker reliability
        checker_weights = {
            'cross_reference': 0.3,
            'consistency': 0.25,
            'credibility': 0.25,
            'temporal': 0.2
        }
        
        weighted_confidence = 0.0
        all_evidence = []
        all_contradictions = []
        all_sources = []
        
        for i, result in enumerate(results):
            checker_name = list(self.fact_checkers.keys())[i]
            weight = checker_weights[checker_name]
            
            if result.is_valid:
                weighted_confidence += result.confidence * weight
            else:
                weighted_confidence -= (1 - result.confidence) * weight
                
            all_evidence.extend(result.evidence)
            all_contradictions.extend(result.contradictions)
            all_sources.extend(result.sources)
            
        # Normalize confidence to [0, 1]
        final_confidence = max(0.0, min(1.0, weighted_confidence))
        
        return ValidationResult(
            is_valid=final_confidence > 0.6,  # Configurable threshold
            confidence=final_confidence,
            evidence=list(set(all_evidence)),  # Remove duplicates
            contradictions=list(set(all_contradictions)),
            sources=list(set(all_sources))
        )

class CrossReferenceChecker:
    def __init__(self):
        self.reference_sources = {
            'wikipedia': WikipediaChecker(),
            'wikidata': WikidataChecker(),
            'scholarly': ScholarlySourceChecker(),
            'news': NewsSourceChecker()
        }
        
    async def check(self, fact: Dict) -> ValidationResult:
        """Cross-reference fact against multiple sources"""
        
        query = self._construct_fact_query(fact)
        
        # Query all reference sources
        source_tasks = [
            source.query(query) 
            for source in self.reference_sources.values()
        ]
        
        source_results = await asyncio.gather(*source_tasks)
        
        # Analyze cross-reference results
        supporting_sources = []
        contradicting_sources = []
        evidence_texts = []
        
        for source_name, result in zip(self.reference_sources.keys(), source_results):
            if result['supports_fact']:
                supporting_sources.append(source_name)
                evidence_texts.extend(result['evidence'])
            elif result['contradicts_fact']:
                contradicting_sources.append(source_name)
                
        # Calculate confidence based on source agreement
        total_sources = len(source_results)
        support_ratio = len(supporting_sources) / total_sources if total_sources > 0 else 0
        
        return ValidationResult(
            is_valid=support_ratio > 0.5,
            confidence=support_ratio,
            evidence=evidence_texts,
            contradictions=contradicting_sources,
            sources=supporting_sources
        )

class ConsistencyChecker:
    def __init__(self):
        self.reasoning_engine = ReasoningEngine()
        
    async def check(self, fact: Dict) -> ValidationResult:
        """Check fact consistency against existing knowledge"""
        
        # Query existing knowledge base for related facts
        related_facts = await self._find_related_facts(fact)
        
        # Check for logical consistency
        consistency_results = []
        
        for related_fact in related_facts:
            consistency = await self.reasoning_engine.check_consistency(fact, related_fact)
            consistency_results.append(consistency)
            
        # Analyze consistency results
        contradictions = [
            result for result in consistency_results 
            if result['type'] == 'contradiction'
        ]
        
        supports = [
            result for result in consistency_results 
            if result['type'] == 'support'
        ]
        
        # Calculate consistency score
        total_checks = len(consistency_results)
        if total_checks == 0:
            confidence = 0.5  # Neutral if no related facts
        else:
            support_ratio = len(supports) / total_checks
            contradiction_ratio = len(contradictions) / total_checks
            confidence = support_ratio - contradiction_ratio
            
        return ValidationResult(
            is_valid=len(contradictions) == 0,
            confidence=max(0.0, min(1.0, confidence)),
            evidence=[s['explanation'] for s in supports],
            contradictions=[c['explanation'] for c in contradictions],
            sources=['knowledge_base']
        )

class CredibilityChecker:
    def __init__(self):
        self.source_credibility_db = SourceCredibilityDB()
        self.bias_detector = BiasDetector()
        
    async def check(self, fact: Dict) -> ValidationResult:
        """Check source credibility and bias"""
        
        source_info = fact.get('source', {})
        
        # Check source credibility
        credibility_score = await self.source_credibility_db.get_credibility(
            source_info.get('domain', ''),
            source_info.get('author', ''),
            source_info.get('publication', '')
        )
        
        # Detect potential bias
        bias_analysis = await self.bias_detector.analyze(
            fact.get('text', ''),
            source_info
        )
        
        # Calculate overall credibility
        base_credibility = credibility_score.get('overall_score', 0.5)
        bias_penalty = bias_analysis.get('bias_score', 0) * 0.3
        
        final_credibility = max(0.0, base_credibility - bias_penalty)
        
        evidence = []
        if credibility_score.get('high_authority', False):
            evidence.append("High authority source")
        if credibility_score.get('peer_reviewed', False):
            evidence.append("Peer-reviewed publication")
            
        contradictions = []
        if bias_analysis.get('high_bias', False):
            contradictions.append(f"High bias detected: {bias_analysis['bias_type']}")
        if credibility_score.get('low_credibility', False):
            contradictions.append("Low credibility source")
            
        return ValidationResult(
            is_valid=final_credibility > 0.6,
            confidence=final_credibility,
            evidence=evidence,
            contradictions=contradictions,
            sources=[source_info.get('name', 'unknown')]
        )

Knowledge Distillation

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from transformers import (
    AutoTokenizer, AutoModelForSequenceClassification,
    Trainer, TrainingArguments
)
import torch
import torch.nn as nn
from typing import Dict, List, Tuple

class KnowledgeDistiller:
    def __init__(self, teacher_model_path: str, student_model_config: Dict):
        # Load teacher model (large, high-performance model)
        self.teacher_tokenizer = AutoTokenizer.from_pretrained(teacher_model_path)
        self.teacher_model = AutoModelForSequenceClassification.from_pretrained(teacher_model_path)
        
        # Initialize student model (smaller, efficient model)
        self.student_tokenizer = AutoTokenizer.from_pretrained(
            student_model_config['base_model']
        )
        self.student_model = AutoModelForSequenceClassification.from_pretrained(
            student_model_config['base_model'],
            num_labels=student_model_config['num_labels']
        )
        
        self.temperature = student_model_config.get('temperature', 3.0)
        self.alpha = student_model_config.get('alpha', 0.7)  # Weight for distillation loss
        
    async def distill_knowledge(self, training_data: List[Dict], 
                               output_path: str) -> Dict[str, Any]:
        """Distill knowledge from teacher to student model"""
        
        # Generate soft targets from teacher
        soft_targets_data = await self._generate_soft_targets(training_data)
        
        # Prepare training dataset
        train_dataset = self._prepare_distillation_dataset(soft_targets_data)
        
        # Set up training arguments
        training_args = TrainingArguments(
            output_dir=output_path,
            num_train_epochs=3,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=64,
            warmup_steps=500,
            weight_decay=0.01,
            logging_dir=f"{output_path}/logs",
            save_strategy="epoch",
            evaluation_strategy="epoch",
            load_best_model_at_end=True,
            metric_for_best_model="eval_loss",
        )
        
        # Custom trainer with distillation loss
        trainer = DistillationTrainer(
            model=self.student_model,
            args=training_args,
            train_dataset=train_dataset,
            tokenizer=self.student_tokenizer,
            temperature=self.temperature,
            alpha=self.alpha
        )
        
        # Train student model
        training_result = trainer.train()
        
        # Save distilled model
        trainer.save_model(output_path)
        
        # Evaluate compression and performance
        evaluation_results = await self._evaluate_distilled_model(
            output_path, training_data
        )
        
        return {
            'training_loss': training_result.training_loss,
            'model_size_reduction': evaluation_results['size_reduction'],
            'performance_retention': evaluation_results['performance_retention'],
            'inference_speedup': evaluation_results['speedup']
        }
        
    async def _generate_soft_targets(self, training_data: List[Dict]) -> List[Dict]:
        """Generate soft targets from teacher model"""
        
        self.teacher_model.eval()
        soft_targets_data = []
        
        for batch_start in range(0, len(training_data), 32):  # Process in batches
            batch_data = training_data[batch_start:batch_start + 32]
            
            # Prepare inputs
            texts = [item['text'] for item in batch_data]
            inputs = self.teacher_tokenizer(
                texts, 
                padding=True, 
                truncation=True, 
                return_tensors="pt",
                max_length=512
            )
            
            # Generate soft targets
            with torch.no_grad():
                outputs = self.teacher_model(**inputs)
                soft_logits = outputs.logits / self.temperature
                soft_probs = torch.softmax(soft_logits, dim=-1)
                
            # Store soft targets with original data
            for i, item in enumerate(batch_data):
                soft_targets_data.append({
                    **item,
                    'soft_targets': soft_probs[i].cpu().numpy(),
                    'teacher_logits': outputs.logits[i].cpu().numpy()
                })
                
        return soft_targets_data

class DistillationTrainer(Trainer):
    def __init__(self, temperature: float, alpha: float, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.temperature = temperature
        self.alpha = alpha
        
    def compute_loss(self, model, inputs, return_outputs=False):
        """Custom loss combining distillation and task losses"""
        
        # Get student predictions
        outputs = model(**inputs)
        student_logits = outputs.logits
        
        # Get soft targets from teacher
        soft_targets = inputs.get('soft_targets')
        hard_labels = inputs.get('labels')
        
        # Distillation loss (KL divergence)
        student_soft = torch.log_softmax(student_logits / self.temperature, dim=-1)
        teacher_soft = torch.softmax(soft_targets / self.temperature, dim=-1)
        
        distillation_loss = nn.KLDivLoss(reduction='batchmean')(
            student_soft, teacher_soft
        ) * (self.temperature ** 2)
        
        # Task loss (standard cross-entropy)
        if hard_labels is not None:
            task_loss = nn.CrossEntropyLoss()(student_logits, hard_labels)
        else:
            task_loss = 0
            
        # Combined loss
        total_loss = self.alpha * distillation_loss + (1 - self.alpha) * task_loss
        
        return (total_loss, outputs) if return_outputs else total_loss

class KnowledgeCurator:
    def __init__(self):
        self.quality_assessor = QualityAssessor()
        self.redundancy_detector = RedundancyDetector()
        self.knowledge_graph = KnowledgeGraphManager()
        self.update_scheduler = UpdateScheduler()
        
    async def curate_knowledge(self, raw_knowledge: List[Dict]) -> Dict[str, Any]:
        """Curate and organize extracted knowledge"""
        
        curation_results = {
            'curated_knowledge': [],
            'rejected_items': [],
            'quality_scores': {},
            'curation_stats': {}
        }
        
        # Quality assessment
        quality_results = await self._assess_quality(raw_knowledge)
        
        # Filter high-quality knowledge
        high_quality_items = [
            item for item, quality in zip(raw_knowledge, quality_results)
            if quality['overall_score'] > 0.7
        ]
        
        # Remove redundancy
        unique_items = await self._remove_redundancy(high_quality_items)
        
        # Organize knowledge hierarchically
        organized_knowledge = await self._organize_hierarchically(unique_items)
        
        # Update knowledge graph
        graph_updates = await self.knowledge_graph.update_with_knowledge(
            organized_knowledge
        )
        
        # Schedule for periodic review
        await self.update_scheduler.schedule_review(organized_knowledge)
        
        curation_results.update({
            'curated_knowledge': organized_knowledge,
            'quality_scores': dict(zip(range(len(quality_results)), quality_results)),
            'graph_updates': graph_updates,
            'curation_stats': {
                'input_items': len(raw_knowledge),
                'high_quality_items': len(high_quality_items),
                'unique_items': len(unique_items),
                'final_curated': len(organized_knowledge)
            }
        })
        
        return curation_results
        
    async def _assess_quality(self, knowledge_items: List[Dict]) -> List[Dict]:
        """Assess quality of knowledge items"""
        
        quality_tasks = [
            self.quality_assessor.assess(item) 
            for item in knowledge_items
        ]
        
        return await asyncio.gather(*quality_tasks)
        
    async def _remove_redundancy(self, knowledge_items: List[Dict]) -> List[Dict]:
        """Remove redundant knowledge items"""
        
        # Group similar items
        similarity_groups = await self.redundancy_detector.group_similar_items(
            knowledge_items
        )
        
        unique_items = []
        
        for group in similarity_groups:
            if len(group) == 1:
                unique_items.extend(group)
            else:
                # Select best representative from group
                best_item = await self._select_best_representative(group)
                unique_items.append(best_item)
                
        return unique_items
        
    async def _select_best_representative(self, similar_items: List[Dict]) -> Dict:
        """Select the best representative from similar items"""
        
        # Score each item
        scored_items = []
        
        for item in similar_items:
            score = 0
            
            # Quality score
            score += item.get('quality_score', 0) * 0.4
            
            # Completeness score
            completeness = len(item.get('properties', {})) / 10  # Normalize
            score += completeness * 0.3
            
            # Recency score
            recency = self._calculate_recency_score(item)
            score += recency * 0.2
            
            # Source credibility
            credibility = item.get('source_credibility', 0.5)
            score += credibility * 0.1
            
            scored_items.append((score, item))
            
        # Return highest scoring item
        best_score, best_item = max(scored_items, key=lambda x: x[0])
        
        # Merge complementary information from other items
        merged_item = await self._merge_complementary_info(best_item, similar_items)
        
        return merged_item

Monitoring & Quality Assurance

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
import structlog
from prometheus_client import Counter, Histogram, Gauge
from datetime import datetime, timedelta

class KnowledgeQualityMonitor:
    def __init__(self):
        # Prometheus metrics
        self.extraction_count = Counter(
            'knowledge_extraction_total',
            'Total knowledge extractions',
            ['extraction_type', 'source_type', 'status']
        )
        
        self.validation_accuracy = Gauge(
            'knowledge_validation_accuracy',
            'Knowledge validation accuracy',
            ['validation_type']
        )
        
        self.knowledge_quality_score = Histogram(
            'knowledge_quality_score',
            'Distribution of knowledge quality scores',
            ['knowledge_type', 'domain']
        )
        
        self.curation_efficiency = Gauge(
            'knowledge_curation_efficiency',
            'Knowledge curation efficiency ratio'
        )
        
        # Structured logging
        self.logger = structlog.get_logger()
        
    def track_extraction_quality(self, extraction_results: Dict, 
                                validation_results: Dict):
        """Track quality metrics for knowledge extraction"""
        
        # Count extractions by type
        for extraction_type, items in extraction_results.items():
            if extraction_type != 'metadata':
                self.extraction_count.labels(
                    extraction_type=extraction_type,
                    source_type=extraction_results['metadata']['source_type'],
                    status='success'
                ).inc(len(items))
                
        # Track validation accuracy
        for validation_type, results in validation_results.items():
            if isinstance(results, list):
                accuracy = sum(r.is_valid for r in results) / len(results) if results else 0
                self.validation_accuracy.labels(
                    validation_type=validation_type
                ).set(accuracy)
                
                # Track quality scores
                for result in results:
                    self.knowledge_quality_score.labels(
                        knowledge_type=validation_type,
                        domain='general'  # Could be more specific
                    ).observe(result.confidence)
                    
        # Log detailed metrics
        self.logger.info(
            "knowledge_extraction_completed",
            total_entities=len(extraction_results.get('entities', [])),
            total_relations=len(extraction_results.get('relations', [])),
            total_facts=len(extraction_results.get('facts', [])),
            validation_scores={
                k: [r.confidence for r in v] if isinstance(v, list) else v
                for k, v in validation_results.items()
            }
        )
        
    def generate_quality_report(self, time_window_days: int = 7) -> Dict[str, Any]:
        """Generate comprehensive quality report"""
        
        # This would typically query your metrics backend
        report = {
            'time_window': f"{time_window_days} days",
            'extraction_summary': {
                'total_extractions': 0,  # Query from metrics
                'success_rate': 0.95,   # Calculate from metrics
                'average_quality': 0.8   # Calculate from quality scores
            },
            'validation_summary': {
                'cross_reference_accuracy': 0.85,
                'consistency_accuracy': 0.90,
                'credibility_accuracy': 0.75,
                'temporal_accuracy': 0.88
            },
            'curation_summary': {
                'items_curated': 0,      # Query from metrics
                'redundancy_reduction': 0.30,  # Calculate reduction ratio
                'quality_improvement': 0.15     # Quality score improvement
            },
            'recommendations': []
        }
        
        # Generate recommendations based on metrics
        if report['validation_summary']['credibility_accuracy'] < 0.8:
            report['recommendations'].append({
                'type': 'credibility_improvement',
                'message': 'Consider improving source credibility detection',
                'priority': 'high'
            })
            
        return report

Next Steps

The Knowledge Management component transforms raw data into validated, structured knowledge that powers intelligent decision-making throughout the AIMatrix platform. It ensures that your AI systems have access to accurate, up-to-date, and relevant knowledge for any business scenario.