Data Repositories

Data Repositories

The Data Repositories component leverages Supabase as the primary data platform, providing PostgreSQL-powered storage systems optimized for different data types, access patterns, and performance requirements. Supabase’s native support for vector embeddings via pgvector, real-time subscriptions, and edge deployment makes it the ideal foundation for AIMatrix’s data layer.

Repository Types Overview

  graph LR
    A[Data Sources] --> B{Supabase Data Router}
    B --> C[Knowledge Graphs]
    B --> D[Vector Storage]
    B --> E[Time-series Data]
    B --> F[Document Storage]
    B --> G[Real-time Sync]
    
    C --> H[PostgreSQL + Graph Extensions]
    D --> I[pgvector + Embeddings]
    E --> J[TimescaleDB Extension]
    F --> K[JSONB + Full-text Search]
    G --> L[Supabase Realtime]

Supabase as Primary Data Platform

Architecture & Implementation

Supabase provides a comprehensive data platform built on PostgreSQL, offering native support for vectors, JSON documents, time-series data, and real-time subscriptions. This unified approach eliminates the complexity of managing multiple specialized databases.

Core Supabase Setup

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
import { createClient } from '@supabase/supabase-js'

// Initialize Supabase client
const supabase = createClient(
  process.env.SUPABASE_URL!,
  process.env.SUPABASE_ANON_KEY!
)

// Enable pgvector extension
const { error } = await supabase.rpc('enable_extensions', {
  extensions: ['vector', 'timescaledb', 'pg_trgm', 'fuzzystrmatch']
})

Knowledge Graphs with PostgreSQL

Graph Data in PostgreSQL

Supabase’s PostgreSQL foundation supports graph-like data structures using recursive CTEs, adjacency lists, and specialized graph extensions.

Graph Schema Setup

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
-- Create knowledge graph tables in Supabase
CREATE TABLE entities (
  id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
  type TEXT NOT NULL,
  name TEXT NOT NULL,
  properties JSONB DEFAULT '{}',
  embedding VECTOR(1536),
  created_at TIMESTAMPTZ DEFAULT NOW()
);

CREATE TABLE relationships (
  id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
  source_id UUID REFERENCES entities(id),
  target_id UUID REFERENCES entities(id),
  relationship_type TEXT NOT NULL,
  properties JSONB DEFAULT '{}',
  strength FLOAT DEFAULT 1.0,
  created_at TIMESTAMPTZ DEFAULT NOW()
);

-- Create indexes for performance
CREATE INDEX idx_entities_type ON entities(type);
CREATE INDEX idx_entities_embedding ON entities USING ivfflat (embedding vector_cosine_ops);
CREATE INDEX idx_relationships_source ON relationships(source_id);
CREATE INDEX idx_relationships_target ON relationships(target_id);
CREATE INDEX idx_relationships_type ON relationships(relationship_type);

-- Example entity creation
INSERT INTO entities (type, name, properties, embedding) VALUES
('Person', 'John Smith', '{
  "title": "Data Scientist",
  "skills": ["Python", "Machine Learning", "Statistics"],
  "experience_years": 5
}', '[0.1, 0.2, 0.3, ...]'),
('Company', 'TechCorp Inc.', '{
  "industry": "Technology",
  "size": "Enterprise",
  "founded": 2010,
  "employees": 1000
}', '[0.4, 0.5, 0.6, ...]');

-- Create relationships
INSERT INTO relationships (source_id, target_id, relationship_type, properties)
SELECT 
  p.id as source_id,
  c.id as target_id,
  'WORKS_FOR' as relationship_type,
  '{"role": "Senior Data Scientist", "since": "2021-01-01"}' as properties
FROM entities p, entities c 
WHERE p.name = 'John Smith' AND c.name = 'TechCorp Inc.';

Graph Traversal with PostgreSQL

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
-- Supabase function for graph traversal
CREATE OR REPLACE FUNCTION traverse_graph(
  start_entity_id UUID,
  max_depth INTEGER DEFAULT 3,
  relationship_types TEXT[] DEFAULT NULL
)
RETURNS TABLE(
  path_id UUID[],
  path_names TEXT[],
  path_types TEXT[],
  depth INTEGER,
  total_strength FLOAT
) AS $$
WITH RECURSIVE graph_traversal AS (
  -- Base case: start with the initial entity
  SELECT 
    ARRAY[e.id] as path_id,
    ARRAY[e.name] as path_names,
    ARRAY[e.type] as path_types,
    0 as depth,
    1.0 as total_strength
  FROM entities e
  WHERE e.id = start_entity_id
  
  UNION ALL
  
  -- Recursive case: follow relationships
  SELECT 
    gt.path_id || r.target_id as path_id,
    gt.path_names || te.name as path_names,
    gt.path_types || te.type as path_types,
    gt.depth + 1 as depth,
    gt.total_strength * r.strength as total_strength
  FROM graph_traversal gt
  JOIN relationships r ON r.source_id = gt.path_id[array_length(gt.path_id, 1)]
  JOIN entities te ON te.id = r.target_id
  WHERE 
    gt.depth < max_depth
    AND NOT (r.target_id = ANY(gt.path_id)) -- Avoid cycles
    AND (relationship_types IS NULL OR r.relationship_type = ANY(relationship_types))
)
SELECT * FROM graph_traversal;
$$ LANGUAGE SQL;

Semantic Layers & Ontology Management

Ontology Definition

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from rdflib import Graph, Namespace, RDF, RDFS, OWL
from rdflib.namespace import FOAF, XSD

# Define custom ontology
class AIMatrixOntology:
    def __init__(self):
        self.graph = Graph()
        self.amx = Namespace("http://aimatrix.com/ontology#")
        self.graph.bind("amx", self.amx)
        self.graph.bind("foaf", FOAF)
        
    def define_classes(self):
        # Define entity classes
        self.graph.add((self.amx.Agent, RDF.type, OWL.Class))
        self.graph.add((self.amx.Agent, RDFS.subClassOf, FOAF.Agent))
        
        self.graph.add((self.amx.KnowledgeBase, RDF.type, OWL.Class))
        self.graph.add((self.amx.DataSource, RDF.type, OWL.Class))
        
    def define_properties(self):
        # Object properties
        self.graph.add((self.amx.hasKnowledge, RDF.type, OWL.ObjectProperty))
        self.graph.add((self.amx.hasKnowledge, RDFS.domain, self.amx.Agent))
        self.graph.add((self.amx.hasKnowledge, RDFS.range, self.amx.KnowledgeBase))
        
        # Data properties
        self.graph.add((self.amx.confidence, RDF.type, OWL.DatatypeProperty))
        self.graph.add((self.amx.confidence, RDFS.domain, self.amx.KnowledgeBase))
        self.graph.add((self.amx.confidence, RDFS.range, XSD.float))

# Usage
ontology = AIMatrixOntology()
ontology.define_classes()
ontology.define_properties()

Knowledge Federation

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
class KnowledgeFederation:
    def __init__(self):
        self.federated_sources = []
        self.schema_mappings = {}
        
    def add_source(self, source_config):
        """Add a knowledge source to federation"""
        self.federated_sources.append({
            'name': source_config['name'],
            'endpoint': source_config['endpoint'],
            'schema': source_config['schema'],
            'weight': source_config.get('weight', 1.0)
        })
        
    def create_schema_mapping(self, source_schema, target_schema):
        """Map between different knowledge schemas"""
        mapping = {
            'entity_mappings': {},
            'property_mappings': {},
            'relationship_mappings': {}
        }
        
        # Example mapping
        mapping['entity_mappings'] = {
            'Person': 'foaf:Person',
            'Organization': 'foaf:Organization'
        }
        
        self.schema_mappings[f"{source_schema}->{target_schema}"] = mapping
        
    def federated_query(self, query):
        """Execute query across federated sources"""
        results = []
        for source in self.federated_sources:
            source_result = self._execute_on_source(source, query)
            mapped_result = self._apply_schema_mapping(source_result, source)
            results.extend(mapped_result)
        
        return self._merge_results(results)

Vector Storage with pgvector

Unified Vector Storage with Supabase

Supabase’s pgvector extension provides enterprise-grade vector storage with PostgreSQL’s ACID guarantees, eliminating the need for separate vector databases.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import { createClient } from '@supabase/supabase-js'
import OpenAI from 'openai'

interface VectorDocument {
  id?: string
  content: string
  embedding?: number[]
  metadata: Record<string, any>
  collection_name: string
}

class SupabaseVectorStore {
  private supabase
  private openai
  
  constructor(supabaseUrl: string, supabaseKey: string, openaiKey: string) {
    this.supabase = createClient(supabaseUrl, supabaseKey)
    this.openai = new OpenAI({ apiKey: openaiKey })
  }
  
  async setupVectorTables() {
    // Create documents table with vector support
    const { error } = await this.supabase.rpc('create_vector_table', {
      table_sql: `
        CREATE TABLE IF NOT EXISTS vector_documents (
          id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
          content TEXT NOT NULL,
          embedding VECTOR(1536),
          metadata JSONB DEFAULT '{}',
          collection_name TEXT NOT NULL,
          created_at TIMESTAMPTZ DEFAULT NOW(),
          updated_at TIMESTAMPTZ DEFAULT NOW()
        );
        
        -- Create indexes for optimal performance
        CREATE INDEX IF NOT EXISTS idx_vector_documents_embedding 
        ON vector_documents USING ivfflat (embedding vector_cosine_ops);
        
        CREATE INDEX IF NOT EXISTS idx_vector_documents_collection 
        ON vector_documents(collection_name);
        
        CREATE INDEX IF NOT EXISTS idx_vector_documents_metadata 
        ON vector_documents USING GIN (metadata);
      `
    })
    
    if (error) throw error
  }
  
  async storeDocument(doc: VectorDocument): Promise<string> {
    // Generate embedding if not provided
    if (!doc.embedding) {
      const response = await this.openai.embeddings.create({
        model: 'text-embedding-ada-002',
        input: doc.content
      })
      doc.embedding = response.data[0].embedding
    }
    
    const { data, error } = await this.supabase
      .from('vector_documents')
      .insert([
        {
          content: doc.content,
          embedding: doc.embedding,
          metadata: doc.metadata,
          collection_name: doc.collection_name
        }
      ])
      .select('id')
      .single()
    
    if (error) throw error
    return data.id
  }
  
  async similaritySearch(
    query: string,
    options: {
      collectionName?: string
      limit?: number
      threshold?: number
      filter?: Record<string, any>
    } = {}
  ) {
    const { 
      collectionName,
      limit = 10,
      threshold = 0.7,
      filter
    } = options
    
    // Generate query embedding
    const response = await this.openai.embeddings.create({
      model: 'text-embedding-ada-002',
      input: query
    })
    const queryEmbedding = response.data[0].embedding
    
    // Build query with filters
    let rpcQuery = this.supabase.rpc('vector_similarity_search', {
      query_embedding: queryEmbedding,
      match_threshold: threshold,
      match_count: limit
    })
    
    if (collectionName) {
      rpcQuery = rpcQuery.eq('collection_name', collectionName)
    }
    
    if (filter) {
      Object.entries(filter).forEach(([key, value]) => {
        rpcQuery = rpcQuery.contains('metadata', { [key]: value })
      })
    }
    
    const { data, error } = await rpcQuery
    if (error) throw error
    
    return data
  }
}

Advanced Vector Operations

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
-- Create advanced vector search function
CREATE OR REPLACE FUNCTION vector_similarity_search(
  query_embedding VECTOR(1536),
  match_threshold FLOAT DEFAULT 0.78,
  match_count INT DEFAULT 10
)
RETURNS TABLE(
  id UUID,
  content TEXT,
  metadata JSONB,
  collection_name TEXT,
  similarity FLOAT
)
LANGUAGE SQL
AS $$
SELECT
  id,
  content,
  metadata,
  collection_name,
  1 - (embedding <=> query_embedding) AS similarity
FROM vector_documents
WHERE 1 - (embedding <=> query_embedding) > match_threshold
ORDER BY embedding <=> query_embedding
LIMIT match_count;
$$;

-- Hybrid search combining vector and full-text search
CREATE OR REPLACE FUNCTION hybrid_search(
  query_text TEXT,
  query_embedding VECTOR(1536),
  semantic_weight FLOAT DEFAULT 0.7,
  keyword_weight FLOAT DEFAULT 0.3,
  match_count INT DEFAULT 10
)
RETURNS TABLE(
  id UUID,
  content TEXT,
  metadata JSONB,
  collection_name TEXT,
  combined_score FLOAT
)
LANGUAGE SQL
AS $$
SELECT
  id,
  content,
  metadata,
  collection_name,
  (
    semantic_weight * (1 - (embedding <=> query_embedding)) +
    keyword_weight * ts_rank_cd(to_tsvector('english', content), plainto_tsquery('english', query_text))
  ) AS combined_score
FROM vector_documents
WHERE 
  to_tsvector('english', content) @@ plainto_tsquery('english', query_text)
  OR (1 - (embedding <=> query_embedding)) > 0.7
ORDER BY combined_score DESC
LIMIT match_count;
$$;

Real-time Vector Updates

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
// Real-time vector search with Supabase subscriptions
class RealTimeVectorStore extends SupabaseVectorStore {
  private subscriptions: Map<string, any> = new Map()
  
  async subscribeToCollection(
    collectionName: string,
    callback: (payload: any) => void
  ) {
    const subscription = this.supabase
      .channel(`vector_updates_${collectionName}`)
      .on(
        'postgres_changes',
        {
          event: '*',
          schema: 'public',
          table: 'vector_documents',
          filter: `collection_name=eq.${collectionName}`
        },
        callback
      )
      .subscribe()
    
    this.subscriptions.set(collectionName, subscription)
    return subscription
  }
  
  async bulkUpsert(documents: VectorDocument[]): Promise<string[]> {
    // Generate embeddings for documents without them
    const docsWithEmbeddings = await Promise.all(
      documents.map(async (doc) => {
        if (!doc.embedding) {
          const response = await this.openai.embeddings.create({
            model: 'text-embedding-ada-002',
            input: doc.content
          })
          doc.embedding = response.data[0].embedding
        }
        return doc
      })
    )
    
    // Batch insert for performance
    const { data, error } = await this.supabase
      .from('vector_documents')
      .upsert(docsWithEmbeddings.map(doc => ({
        id: doc.id,
        content: doc.content,
        embedding: doc.embedding,
        metadata: doc.metadata,
        collection_name: doc.collection_name
      })))
      .select('id')
    
    if (error) throw error
    return data.map(row => row.id)
  }
  
  async semanticClustering(
    collectionName: string,
    numClusters: number = 5
  ) {
    // Use pgvector for k-means clustering
    const { data, error } = await this.supabase.rpc('vector_kmeans_clustering', {
      collection_name: collectionName,
      k: numClusters
    })
    
    if (error) throw error
    return data
  }
}

Multi-Modal Vector Storage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
-- Create multi-modal vector table
CREATE TABLE multimodal_vectors (
  id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
  content_type TEXT NOT NULL, -- 'text', 'image', 'audio', 'video'
  content_text TEXT,
  content_url TEXT,
  text_embedding VECTOR(1536),
  image_embedding VECTOR(512),
  combined_embedding VECTOR(2048),
  metadata JSONB DEFAULT '{}',
  collection_name TEXT NOT NULL,
  created_at TIMESTAMPTZ DEFAULT NOW()
);

-- Create specialized indexes
CREATE INDEX idx_multimodal_text_embedding 
ON multimodal_vectors USING ivfflat (text_embedding vector_cosine_ops);

CREATE INDEX idx_multimodal_image_embedding 
ON multimodal_vectors USING ivfflat (image_embedding vector_cosine_ops);

CREATE INDEX idx_multimodal_combined_embedding 
ON multimodal_vectors USING ivfflat (combined_embedding vector_cosine_ops);

-- Multi-modal search function
CREATE OR REPLACE FUNCTION multimodal_search(
  query_text_embedding VECTOR(1536) DEFAULT NULL,
  query_image_embedding VECTOR(512) DEFAULT NULL,
  content_types TEXT[] DEFAULT NULL,
  match_count INT DEFAULT 10
)
RETURNS TABLE(
  id UUID,
  content_type TEXT,
  content_text TEXT,
  content_url TEXT,
  metadata JSONB,
  similarity_score FLOAT
)
LANGUAGE SQL
AS $$
SELECT
  id,
  content_type,
  content_text,
  content_url,
  metadata,
  CASE 
    WHEN query_text_embedding IS NOT NULL AND query_image_embedding IS NOT NULL THEN
      -- Combined similarity for multi-modal queries
      (0.6 * (1 - (text_embedding <=> query_text_embedding)) + 
       0.4 * (1 - (image_embedding <=> query_image_embedding)))
    WHEN query_text_embedding IS NOT NULL THEN
      1 - (text_embedding <=> query_text_embedding)
    WHEN query_image_embedding IS NOT NULL THEN
      1 - (image_embedding <=> query_image_embedding)
    ELSE 0
  END AS similarity_score
FROM multimodal_vectors
WHERE 
  (content_types IS NULL OR content_type = ANY(content_types))
  AND (
    (query_text_embedding IS NOT NULL AND text_embedding IS NOT NULL) OR
    (query_image_embedding IS NOT NULL AND image_embedding IS NOT NULL)
  )
ORDER BY similarity_score DESC
LIMIT match_count;
$$;

Time-series Data with TimescaleDB Extension

Supabase TimescaleDB Integration

Supabase supports the TimescaleDB extension, providing powerful time-series capabilities directly within PostgreSQL.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
class SupabaseTimeSeriesManager {
  private supabase
  
  constructor(supabaseUrl: string, supabaseKey: string) {
    this.supabase = createClient(supabaseUrl, supabaseKey)
  }
  
  async setupTimeSeriesTables() {
    // Enable TimescaleDB extension
    await this.supabase.rpc('enable_timescaledb')
    
    // Create time-series table
    const { error } = await this.supabase.rpc('create_timeseries_table', {
      table_sql: `
        CREATE TABLE IF NOT EXISTS metrics (
          time TIMESTAMPTZ NOT NULL,
          metric_name TEXT NOT NULL,
          value DOUBLE PRECISION,
          tags JSONB DEFAULT '{}',
          metadata JSONB DEFAULT '{}',
          embedding VECTOR(384) -- For semantic time-series analysis
        );
        
        -- Convert to hypertable
        SELECT create_hypertable('metrics', 'time', if_not_exists => TRUE);
        
        -- Create indexes
        CREATE INDEX IF NOT EXISTS idx_metrics_name_time ON metrics (metric_name, time DESC);
        CREATE INDEX IF NOT EXISTS idx_metrics_tags ON metrics USING GIN (tags);
        CREATE INDEX IF NOT EXISTS idx_metrics_embedding ON metrics USING ivfflat (embedding vector_cosine_ops);
        
        -- Create continuous aggregate for real-time analytics
        CREATE MATERIALIZED VIEW IF NOT EXISTS metrics_hourly
        WITH (timescaledb.continuous) AS
        SELECT 
          metric_name,
          time_bucket('1 hour', time) as hour,
          avg(value) as avg_value,
          max(value) as max_value,
          min(value) as min_value,
          count(*) as count,
          stddev(value) as stddev_value
        FROM metrics
        GROUP BY metric_name, hour
        WITH NO DATA;
        
        -- Add refresh policy
        SELECT add_continuous_aggregate_policy('metrics_hourly',
          start_offset => INTERVAL '2 hours',
          end_offset => INTERVAL '1 minute',
          schedule_interval => INTERVAL '1 minute');
      `
    })
    
    if (error) throw error
  }
  
  async writeMetrics(measurements: Array<{
    metricName: string
    value: number
    tags?: Record<string, any>
    metadata?: Record<string, any>
    timestamp?: Date
    embedding?: number[]
  }>) {
    const data = measurements.map(m => ({
      time: m.timestamp || new Date(),
      metric_name: m.metricName,
      value: m.value,
      tags: m.tags || {},
      metadata: m.metadata || {},
      embedding: m.embedding
    }))
    
    const { error } = await this.supabase
      .from('metrics')
      .insert(data)
    
    if (error) throw error
  }
  
  async queryAggregatedMetrics(
    metricName: string,
    timeRange: { start: Date; end: Date },
    aggregation: 'avg' | 'sum' | 'max' | 'min' | 'count' = 'avg',
    interval: string = '5 minutes'
  ) {
    const { data, error } = await this.supabase.rpc('query_time_series', {
      metric_name: metricName,
      start_time: timeRange.start.toISOString(),
      end_time: timeRange.end.toISOString(),
      time_interval: interval,
      aggregation_func: aggregation
    })
    
    if (error) throw error
    return data
  }
  
  async detectAnomalies(
    metricName: string,
    lookbackHours: number = 24,
    threshold: number = 3.0
  ) {
    const { data, error } = await this.supabase.rpc('detect_metric_anomalies', {
      metric_name: metricName,
      lookback_hours: lookbackHours,
      anomaly_threshold: threshold
    })
    
    if (error) throw error
    return data
  }
}

Advanced Time-Series Functions

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
-- Time-series aggregation function
CREATE OR REPLACE FUNCTION query_time_series(
  metric_name TEXT,
  start_time TIMESTAMPTZ,
  end_time TIMESTAMPTZ,
  time_interval INTERVAL DEFAULT '5 minutes',
  aggregation_func TEXT DEFAULT 'avg'
)
RETURNS TABLE(
  time_bucket TIMESTAMPTZ,
  metric_name TEXT,
  aggregated_value DOUBLE PRECISION,
  count BIGINT
)
LANGUAGE SQL
AS $$
SELECT 
  time_bucket(time_interval, time) as time_bucket,
  metric_name,
  CASE 
    WHEN aggregation_func = 'avg' THEN avg(value)
    WHEN aggregation_func = 'sum' THEN sum(value)
    WHEN aggregation_func = 'max' THEN max(value)
    WHEN aggregation_func = 'min' THEN min(value)
    ELSE avg(value)
  END as aggregated_value,
  count(*) as count
FROM metrics
WHERE 
  metric_name = $1
  AND time BETWEEN start_time AND end_time
GROUP BY time_bucket, metric_name
ORDER BY time_bucket;
$$;

-- Anomaly detection using statistical methods
CREATE OR REPLACE FUNCTION detect_metric_anomalies(
  metric_name TEXT,
  lookback_hours INTEGER DEFAULT 24,
  anomaly_threshold FLOAT DEFAULT 3.0
)
RETURNS TABLE(
  time TIMESTAMPTZ,
  value DOUBLE PRECISION,
  z_score DOUBLE PRECISION,
  is_anomaly BOOLEAN
)
LANGUAGE SQL
AS $$
WITH stats AS (
  SELECT 
    avg(value) as mean_value,
    stddev(value) as std_value
  FROM metrics
  WHERE 
    metric_name = $1
    AND time >= NOW() - (lookback_hours || ' hours')::INTERVAL
),
recent_data AS (
  SELECT 
    m.time,
    m.value,
    (m.value - s.mean_value) / NULLIF(s.std_value, 0) as z_score
  FROM metrics m
  CROSS JOIN stats s
  WHERE 
    m.metric_name = $1
    AND m.time >= NOW() - '1 hour'::INTERVAL
)
SELECT 
  time,
  value,
  z_score,
  abs(z_score) > anomaly_threshold as is_anomaly
FROM recent_data
ORDER BY time DESC;
$$;

Semantic Time-Series Analysis

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
// Combine time-series data with vector embeddings for intelligent analysis
class SemanticTimeSeriesAnalyzer extends SupabaseTimeSeriesManager {
  private openai
  
  constructor(supabaseUrl: string, supabaseKey: string, openaiKey: string) {
    super(supabaseUrl, supabaseKey)
    this.openai = new OpenAI({ apiKey: openaiKey })
  }
  
  async writeSemanticMetrics(measurements: Array<{
    metricName: string
    value: number
    description?: string
    tags?: Record<string, any>
    timestamp?: Date
  }>) {
    // Generate embeddings for metric descriptions
    const enrichedMeasurements = await Promise.all(
      measurements.map(async (m) => {
        let embedding = null
        
        if (m.description) {
          const response = await this.openai.embeddings.create({
            model: 'text-embedding-ada-002',
            input: `${m.metricName}: ${m.description}`
          })
          embedding = response.data[0].embedding
        }
        
        return {
          ...m,
          embedding
        }
      })
    )
    
    return this.writeMetrics(enrichedMeasurements)
  }
  
  async semanticMetricSearch(
    queryDescription: string,
    timeRange: { start: Date; end: Date },
    limit: number = 10
  ) {
    // Generate query embedding
    const response = await this.openai.embeddings.create({
      model: 'text-embedding-ada-002',
      input: queryDescription
    })
    const queryEmbedding = response.data[0].embedding
    
    const { data, error } = await this.supabase.rpc('semantic_metric_search', {
      query_embedding: queryEmbedding,
      start_time: timeRange.start.toISOString(),
      end_time: timeRange.end.toISOString(),
      match_limit: limit
    })
    
    if (error) throw error
    return data
  }
  
  async predictMetricTrends(
    metricName: string,
    forecastHours: number = 24
  ) {
    // Use historical patterns and semantic similarity for trend prediction
    const { data, error } = await this.supabase.rpc('predict_metric_trends', {
      metric_name: metricName,
      forecast_hours: forecastHours
    })
    
    if (error) throw error
    return data
  }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
-- Semantic metric search function
CREATE OR REPLACE FUNCTION semantic_metric_search(
  query_embedding VECTOR(384),
  start_time TIMESTAMPTZ,
  end_time TIMESTAMPTZ,
  match_limit INTEGER DEFAULT 10
)
RETURNS TABLE(
  time TIMESTAMPTZ,
  metric_name TEXT,
  value DOUBLE PRECISION,
  tags JSONB,
  similarity FLOAT
)
LANGUAGE SQL
AS $$
SELECT
  time,
  metric_name,
  value,
  tags,
  1 - (embedding <=> query_embedding) AS similarity
FROM metrics
WHERE 
  time BETWEEN start_time AND end_time
  AND embedding IS NOT NULL
  AND 1 - (embedding <=> query_embedding) > 0.7
ORDER BY similarity DESC, time DESC
LIMIT match_limit;
$$;

Document Storage with JSONB

Supabase Document Storage with JSONB

Supabase’s PostgreSQL foundation provides powerful JSONB support for flexible document storage with the performance of a relational database.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
interface Document {
  id?: string
  title: string
  content: any // Flexible JSONB content
  metadata: Record<string, any>
  tags: string[]
  embedding?: number[]
  collection_name: string
}

class SupabaseDocumentStore {
  private supabase
  private openai
  
  constructor(supabaseUrl: string, supabaseKey: string, openaiKey: string) {
    this.supabase = createClient(supabaseUrl, supabaseKey)
    this.openai = new OpenAI({ apiKey: openaiKey })
  }
  
  async setupDocumentTables() {
    const { error } = await this.supabase.rpc('create_document_tables', {
      table_sql: `
        CREATE TABLE IF NOT EXISTS documents (
          id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
          title TEXT NOT NULL,
          content JSONB NOT NULL,
          metadata JSONB DEFAULT '{}',
          tags TEXT[] DEFAULT '{}',
          embedding VECTOR(1536),
          collection_name TEXT NOT NULL,
          created_at TIMESTAMPTZ DEFAULT NOW(),
          updated_at TIMESTAMPTZ DEFAULT NOW(),
          -- Full-text search vector
          search_vector TSVECTOR GENERATED ALWAYS AS (
            to_tsvector('english', 
              COALESCE(title, '') || ' ' || 
              COALESCE(content::text, '') || ' ' ||
              COALESCE(array_to_string(tags, ' '), '')
            )
          ) STORED
        );
        
        -- Create indexes for optimal performance
        CREATE INDEX IF NOT EXISTS idx_documents_embedding 
        ON documents USING ivfflat (embedding vector_cosine_ops);
        
        CREATE INDEX IF NOT EXISTS idx_documents_search_vector 
        ON documents USING gin (search_vector);
        
        CREATE INDEX IF NOT EXISTS idx_documents_content_gin 
        ON documents USING gin (content);
        
        CREATE INDEX IF NOT EXISTS idx_documents_metadata_gin 
        ON documents USING gin (metadata);
        
        CREATE INDEX IF NOT EXISTS idx_documents_tags_gin 
        ON documents USING gin (tags);
        
        CREATE INDEX IF NOT EXISTS idx_documents_collection 
        ON documents(collection_name);
      `
    })
    
    if (error) throw error
  }
  
  async storeDocument(doc: Document): Promise<string> {
    // Generate embedding for the document
    const text = `${doc.title} ${JSON.stringify(doc.content)} ${doc.tags.join(' ')}`
    const response = await this.openai.embeddings.create({
      model: 'text-embedding-ada-002',
      input: text
    })
    
    const { data, error } = await this.supabase
      .from('documents')
      .insert([{
        id: doc.id,
        title: doc.title,
        content: doc.content,
        metadata: doc.metadata,
        tags: doc.tags,
        embedding: response.data[0].embedding,
        collection_name: doc.collection_name
      }])
      .select('id')
      .single()
    
    if (error) throw error
    return data.id
  }
  
  async intelligentSearch(
    query: string,
    options: {
      collectionName?: string
      searchType?: 'semantic' | 'fulltext' | 'hybrid'
      filters?: Record<string, any>
      limit?: number
    } = {}
  ) {
    const {
      collectionName,
      searchType = 'hybrid',
      filters,
      limit = 10
    } = options
    
    if (searchType === 'semantic') {
      return this.semanticSearch(query, { collectionName, filters, limit })
    } else if (searchType === 'fulltext') {
      return this.fullTextSearch(query, { collectionName, filters, limit })
    } else {
      return this.hybridSearch(query, { collectionName, filters, limit })
    }
  }
  
  private async hybridSearch(
    query: string,
    options: { collectionName?: string; filters?: Record<string, any>; limit?: number }
  ) {
    // Generate query embedding
    const response = await this.openai.embeddings.create({
      model: 'text-embedding-ada-002',
      input: query
    })
    const queryEmbedding = response.data[0].embedding
    
    const { data, error } = await this.supabase.rpc('hybrid_document_search', {
      query_text: query,
      query_embedding: queryEmbedding,
      collection_name: options.collectionName,
      content_filters: options.filters,
      match_limit: options.limit
    })
    
    if (error) throw error
    return data
  }
  
  private async fullTextSearch(
    query: string,
    options: { collectionName?: string; filters?: Record<string, any>; limit?: number }
  ) {
    let queryBuilder = this.supabase
      .from('documents')
      .select('*')
      .textSearch('search_vector', query)
    
    if (options.collectionName) {
      queryBuilder = queryBuilder.eq('collection_name', options.collectionName)
    }
    
    if (options.filters) {
      Object.entries(options.filters).forEach(([key, value]) => {
        queryBuilder = queryBuilder.contains('metadata', { [key]: value })
      })
    }
    
    const { data, error } = await queryBuilder.limit(options.limit || 10)
    if (error) throw error
    return data
  }
}

Advanced Document Search Functions

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
-- Hybrid document search combining semantic and full-text search
CREATE OR REPLACE FUNCTION hybrid_document_search(
  query_text TEXT,
  query_embedding VECTOR(1536),
  collection_name TEXT DEFAULT NULL,
  content_filters JSONB DEFAULT NULL,
  semantic_weight FLOAT DEFAULT 0.6,
  fulltext_weight FLOAT DEFAULT 0.4,
  match_limit INTEGER DEFAULT 10
)
RETURNS TABLE(
  id UUID,
  title TEXT,
  content JSONB,
  metadata JSONB,
  tags TEXT[],
  collection_name TEXT,
  combined_score FLOAT,
  semantic_score FLOAT,
  fulltext_score FLOAT
)
LANGUAGE SQL
AS $$
SELECT
  d.id,
  d.title,
  d.content,
  d.metadata,
  d.tags,
  d.collection_name,
  (
    semantic_weight * (1 - (d.embedding <=> query_embedding)) +
    fulltext_weight * ts_rank_cd(d.search_vector, plainto_tsquery('english', query_text))
  ) AS combined_score,
  1 - (d.embedding <=> query_embedding) AS semantic_score,
  ts_rank_cd(d.search_vector, plainto_tsquery('english', query_text)) AS fulltext_score
FROM documents d
WHERE 
  (
    d.search_vector @@ plainto_tsquery('english', query_text) OR
    (1 - (d.embedding <=> query_embedding)) > 0.7
  )
  AND (collection_name IS NULL OR d.collection_name = collection_name)
  AND (
    content_filters IS NULL OR 
    d.metadata @> content_filters OR
    d.content @> content_filters
  )
ORDER BY combined_score DESC
LIMIT match_limit;
$$;

-- Advanced JSONB content search
CREATE OR REPLACE FUNCTION search_document_content(
  json_path TEXT,
  search_value ANYELEMENT,
  collection_name TEXT DEFAULT NULL,
  match_limit INTEGER DEFAULT 10
)
RETURNS TABLE(
  id UUID,
  title TEXT,
  content JSONB,
  matched_value JSONB
)
LANGUAGE SQL
AS $$
SELECT
  id,
  title,
  content,
  jsonb_extract_path(content, variadic string_to_array(json_path, '.')) as matched_value
FROM documents
WHERE 
  jsonb_extract_path_text(content, variadic string_to_array(json_path, '.')) = search_value::text
  AND (collection_name IS NULL OR documents.collection_name = collection_name)
ORDER BY created_at DESC
LIMIT match_limit;
$$;

Real-time Data Processing with Supabase

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// Real-time data processing and streaming with Supabase
class SupabaseDataProcessor {
  private supabase
  private subscriptions: Map<string, any> = new Map()
  
  constructor(supabaseUrl: string, supabaseKey: string) {
    this.supabase = createClient(supabaseUrl, supabaseKey)
  }
  
  async setupDataPipeline() {
    // Create data processing tables
    const { error } = await this.supabase.rpc('create_data_pipeline', {
      pipeline_sql: `
        -- Raw data ingestion table
        CREATE TABLE IF NOT EXISTS raw_data (
          id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
          source_system TEXT NOT NULL,
          data_type TEXT NOT NULL,
          raw_payload JSONB NOT NULL,
          processed BOOLEAN DEFAULT FALSE,
          created_at TIMESTAMPTZ DEFAULT NOW()
        );
        
        -- Processed data table
        CREATE TABLE IF NOT EXISTS processed_data (
          id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
          raw_data_id UUID REFERENCES raw_data(id),
          processed_payload JSONB NOT NULL,
          embedding VECTOR(1536),
          quality_score FLOAT DEFAULT 1.0,
          processing_metadata JSONB DEFAULT '{}',
          created_at TIMESTAMPTZ DEFAULT NOW()
        );
        
        -- Data lineage table
        CREATE TABLE IF NOT EXISTS data_lineage (
          id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
          source_id UUID NOT NULL,
          target_id UUID NOT NULL,
          transformation_type TEXT NOT NULL,
          transformation_rules JSONB DEFAULT '{}',
          created_at TIMESTAMPTZ DEFAULT NOW()
        );
        
        -- Create indexes
        CREATE INDEX IF NOT EXISTS idx_raw_data_processed ON raw_data(processed);
        CREATE INDEX IF NOT EXISTS idx_processed_data_embedding 
        ON processed_data USING ivfflat (embedding vector_cosine_ops);
        CREATE INDEX IF NOT EXISTS idx_data_lineage_source ON data_lineage(source_id);
        CREATE INDEX IF NOT EXISTS idx_data_lineage_target ON data_lineage(target_id);
        
        -- Create trigger for real-time processing
        CREATE OR REPLACE FUNCTION trigger_data_processing()
        RETURNS TRIGGER AS $$
        BEGIN
          -- Notify processing service
          PERFORM pg_notify('new_data_ingested', row_to_json(NEW)::text);
          RETURN NEW;
        END;
        $$ LANGUAGE plpgsql;
        
        DROP TRIGGER IF EXISTS raw_data_insert_trigger ON raw_data;
        CREATE TRIGGER raw_data_insert_trigger
          AFTER INSERT ON raw_data
          FOR EACH ROW
          EXECUTE FUNCTION trigger_data_processing();
      `
    })
    
    if (error) throw error
  }
  
  async ingestData(
    sourceSystem: string,
    dataType: string,
    payload: any
  ): Promise<string> {
    const { data, error } = await this.supabase
      .from('raw_data')
      .insert([{
        source_system: sourceSystem,
        data_type: dataType,
        raw_payload: payload
      }])
      .select('id')
      .single()
    
    if (error) throw error
    return data.id
  }
  
  async subscribeToDataChanges(
    dataType: string,
    callback: (payload: any) => void
  ) {
    const subscription = this.supabase
      .channel(`data_changes_${dataType}`)
      .on(
        'postgres_changes',
        {
          event: 'INSERT',
          schema: 'public',
          table: 'raw_data',
          filter: `data_type=eq.${dataType}`
        },
        callback
      )
      .subscribe()
    
    this.subscriptions.set(dataType, subscription)
    return subscription
  }
  
  async processData(
    rawDataId: string,
    transformationRules: Record<string, any>
  ) {
    const { data: rawData, error: fetchError } = await this.supabase
      .from('raw_data')
      .select('*')
      .eq('id', rawDataId)
      .single()
    
    if (fetchError) throw fetchError
    
    // Apply transformations
    const processedPayload = this.applyTransformations(
      rawData.raw_payload,
      transformationRules
    )
    
    // Generate embedding if needed
    let embedding = null
    if (transformationRules.generateEmbedding) {
      embedding = await this.generateEmbedding(processedPayload)
    }
    
    // Store processed data
    const { data: processed, error: processError } = await this.supabase
      .from('processed_data')
      .insert([{
        raw_data_id: rawDataId,
        processed_payload: processedPayload,
        embedding,
        processing_metadata: {
          transformation_rules: transformationRules,
          processing_timestamp: new Date().toISOString()
        }
      }])
      .select('id')
      .single()
    
    if (processError) throw processError
    
    // Update raw data as processed
    await this.supabase
      .from('raw_data')
      .update({ processed: true })
      .eq('id', rawDataId)
    
    // Record data lineage
    await this.supabase
      .from('data_lineage')
      .insert([{
        source_id: rawDataId,
        target_id: processed.id,
        transformation_type: 'processing',
        transformation_rules: transformationRules
      }])
    
    return processed.id
  }
  
  private applyTransformations(data: any, rules: Record<string, any>): any {
    // Implementation of data transformation logic
    // This would include data cleaning, normalization, enrichment, etc.
    let transformed = JSON.parse(JSON.stringify(data)) // Deep copy
    
    // Apply various transformation rules
    if (rules.normalize) {
      transformed = this.normalizeData(transformed)
    }
    
    if (rules.enrich) {
      transformed = this.enrichData(transformed, rules.enrich)
    }
    
    if (rules.validate) {
      transformed = this.validateData(transformed, rules.validate)
    }
    
    return transformed
  }
}

Performance Optimization with Supabase

Edge Caching and CDN

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
// Supabase edge caching with geographic distribution
class SupabaseEdgeCache {
  private supabase
  private cacheConfig
  
  constructor(supabaseUrl: string, supabaseKey: string) {
    this.supabase = createClient(supabaseUrl, supabaseKey)
    this.cacheConfig = {
      defaultTTL: 3600, // 1 hour
      maxSize: 10000,   // Max cached items
      regions: ['us-east-1', 'eu-west-1', 'ap-southeast-1']
    }
  }
  
  async setupCachingTables() {
    const { error } = await this.supabase.rpc('create_cache_tables', {
      cache_sql: `
        CREATE TABLE IF NOT EXISTS query_cache (
          cache_key TEXT PRIMARY KEY,
          cached_data JSONB NOT NULL,
          expiry_time TIMESTAMPTZ NOT NULL,
          hit_count INTEGER DEFAULT 0,
          region TEXT DEFAULT 'global',
          created_at TIMESTAMPTZ DEFAULT NOW()
        );
        
        -- Index for fast expiry cleanup
        CREATE INDEX IF NOT EXISTS idx_query_cache_expiry ON query_cache(expiry_time);
        CREATE INDEX IF NOT EXISTS idx_query_cache_region ON query_cache(region);
        
        -- Automatic cleanup function
        CREATE OR REPLACE FUNCTION cleanup_expired_cache()
        RETURNS INTEGER AS $$
        DECLARE
          deleted_count INTEGER;
        BEGIN
          DELETE FROM query_cache WHERE expiry_time < NOW();
          GET DIAGNOSTICS deleted_count = ROW_COUNT;
          RETURN deleted_count;
        END;
        $$ LANGUAGE plpgsql;
        
        -- Schedule automatic cleanup every 5 minutes
        SELECT cron.schedule('cache-cleanup', '*/5 * * * *', 'SELECT cleanup_expired_cache();');
      `
    })
    
    if (error) throw error
  }
  
  async get<T>(cacheKey: string, region?: string): Promise<T | null> {
    const { data, error } = await this.supabase
      .from('query_cache')
      .select('cached_data, expiry_time')
      .eq('cache_key', cacheKey)
      .gt('expiry_time', new Date().toISOString())
      .maybeSingle()
    
    if (error || !data) return null
    
    // Update hit count
    await this.supabase
      .from('query_cache')
      .update({ hit_count: this.supabase.sql`hit_count + 1` })
      .eq('cache_key', cacheKey)
    
    return data.cached_data as T
  }
  
  async set<T>(
    cacheKey: string,
    data: T,
    ttlSeconds?: number,
    region?: string
  ): Promise<void> {
    const expiryTime = new Date(
      Date.now() + (ttlSeconds || this.cacheConfig.defaultTTL) * 1000
    )
    
    const { error } = await this.supabase
      .from('query_cache')
      .upsert([{
        cache_key: cacheKey,
        cached_data: data,
        expiry_time: expiryTime.toISOString(),
        region: region || 'global'
      }])
    
    if (error) throw error
  }
  
  async invalidatePattern(pattern: string): Promise<number> {
    const { data, error } = await this.supabase.rpc('invalidate_cache_pattern', {
      key_pattern: pattern
    })
    
    if (error) throw error
    return data
  }
  
  async getCacheStats(region?: string) {
    const { data, error } = await this.supabase
      .from('query_cache')
      .select('region, count(*), sum(hit_count)')
      .eq(region ? 'region' : 'region', region || 'region')
      .groupBy('region')
    
    if (error) throw error
    return data
  }
}

-- Cache pattern invalidation function
CREATE OR REPLACE FUNCTION invalidate_cache_pattern(key_pattern TEXT)
RETURNS INTEGER AS $$
DECLARE
  deleted_count INTEGER;
BEGIN
  DELETE FROM query_cache WHERE cache_key LIKE key_pattern;
  GET DIAGNOSTICS deleted_count = ROW_COUNT;
  RETURN deleted_count;
END;
$$ LANGUAGE plpgsql;

Query Optimization for Supabase

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
-- Advanced query optimization functions for Supabase
CREATE OR REPLACE FUNCTION optimize_vector_search(
  query_embedding VECTOR(1536),
  optimization_level INTEGER DEFAULT 1
)
RETURNS TABLE(
  id UUID,
  content TEXT,
  similarity FLOAT
)
LANGUAGE SQL
AS $$
BEGIN
  -- Level 1: Basic optimization
  IF optimization_level = 1 THEN
    RETURN QUERY
    SELECT 
      v.id,
      v.content,
      1 - (v.embedding <=> query_embedding) AS similarity
    FROM vector_documents v
    WHERE 1 - (v.embedding <=> query_embedding) > 0.7
    ORDER BY v.embedding <=> query_embedding
    LIMIT 10;
    
  -- Level 2: Advanced optimization with pre-filtering
  ELSIF optimization_level = 2 THEN
    RETURN QUERY
    SELECT 
      v.id,
      v.content,
      1 - (v.embedding <=> query_embedding) AS similarity
    FROM vector_documents v
    WHERE 
      v.metadata->>'category' IS NOT NULL  -- Pre-filter
      AND 1 - (v.embedding <=> query_embedding) > 0.75
    ORDER BY v.embedding <=> query_embedding
    LIMIT 20;
    
  -- Level 3: Maximum optimization with clustering
  ELSE
    RETURN QUERY
    WITH clustered_search AS (
      SELECT DISTINCT ON (v.metadata->>'cluster_id')
        v.id,
        v.content,
        1 - (v.embedding <=> query_embedding) AS similarity,
        v.metadata->>'cluster_id' as cluster_id
      FROM vector_documents v
      WHERE 
        v.metadata->>'cluster_id' IS NOT NULL
        AND 1 - (v.embedding <=> query_embedding) > 0.8
      ORDER BY v.metadata->>'cluster_id', v.embedding <=> query_embedding
    )
    SELECT id, content, similarity
    FROM clustered_search
    ORDER BY similarity DESC
    LIMIT 15;
  END IF;
END;
$$;

-- Adaptive batch processing function
CREATE OR REPLACE FUNCTION adaptive_batch_process(
  operation_type TEXT,
  current_performance_ms INTEGER DEFAULT 1000
)
RETURNS INTEGER AS $$
DECLARE
  optimal_batch_size INTEGER;
BEGIN
  -- Base batch sizes for different operations
  CASE operation_type
    WHEN 'vector_insert' THEN optimal_batch_size := 100;
    WHEN 'document_process' THEN optimal_batch_size := 50;
    WHEN 'graph_traverse' THEN optimal_batch_size := 25;
    ELSE optimal_batch_size := 100;
  END CASE;
  
  -- Adjust based on current performance
  IF current_performance_ms > 2000 THEN  -- Slow performance
    optimal_batch_size := GREATEST(10, optimal_batch_size / 2);
  ELSIF current_performance_ms < 500 THEN  -- Good performance
    optimal_batch_size := LEAST(1000, optimal_batch_size * 2);
  END IF;
  
  RETURN optimal_batch_size;
END;
$$ LANGUAGE plpgsql;

-- Query plan analysis and optimization suggestions
CREATE OR REPLACE FUNCTION analyze_query_performance(
  query_text TEXT
)
RETURNS TABLE(
  execution_time_ms FLOAT,
  suggested_indexes TEXT[],
  optimization_tips TEXT[]
)
LANGUAG SQL
AS $$
DECLARE
  plan_info JSONB;
  exec_time FLOAT;
BEGIN
  -- Analyze query execution plan
  EXECUTE 'EXPLAIN (ANALYZE, BUFFERS, FORMAT JSON) ' || query_text INTO plan_info;
  
  -- Extract execution time
  exec_time := (plan_info->0->'Execution Time')::FLOAT;
  
  -- Return analysis results
  RETURN QUERY
  SELECT 
    exec_time as execution_time_ms,
    ARRAY['Consider adding index on frequently filtered columns'] as suggested_indexes,
    ARRAY['Use LIMIT for large result sets', 'Consider partitioning for time-series data'] as optimization_tips;
END;
$$ LANGUAGE plpgsql;

Monitoring & Observability with Supabase

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// Comprehensive monitoring for Supabase data repositories
class SupabaseMonitoring {
  private supabase
  private metricsStore: SupabaseTimeSeriesManager
  
  constructor(supabaseUrl: string, supabaseKey: string, openaiKey: string) {
    this.supabase = createClient(supabaseUrl, supabaseKey)
    this.metricsStore = new SupabaseTimeSeriesManager(supabaseUrl, supabaseKey)
  }
  
  async setupMonitoring() {
    // Create monitoring tables
    const { error } = await this.supabase.rpc('create_monitoring_tables', {
      monitoring_sql: `
        CREATE TABLE IF NOT EXISTS query_performance (
          id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
          query_type TEXT NOT NULL,
          operation_name TEXT NOT NULL,
          duration_ms INTEGER NOT NULL,
          result_count INTEGER DEFAULT 0,
          cache_hit BOOLEAN DEFAULT FALSE,
          error_message TEXT,
          user_id UUID,
          session_id UUID,
          created_at TIMESTAMPTZ DEFAULT NOW()
        );
        
        CREATE TABLE IF NOT EXISTS system_health (
          id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
          component TEXT NOT NULL,
          status TEXT NOT NULL, -- 'healthy', 'degraded', 'unhealthy'
          metrics JSONB DEFAULT '{}',
          last_check TIMESTAMPTZ DEFAULT NOW()
        );
        
        -- Indexes for performance monitoring
        CREATE INDEX IF NOT EXISTS idx_query_performance_type_time 
        ON query_performance(query_type, created_at DESC);
        
        CREATE INDEX IF NOT EXISTS idx_system_health_component 
        ON system_health(component, last_check DESC);
        
        -- Real-time monitoring view
        CREATE OR REPLACE VIEW real_time_performance AS
        SELECT 
          query_type,
          operation_name,
          COUNT(*) as query_count,
          AVG(duration_ms) as avg_duration,
          MAX(duration_ms) as max_duration,
          MIN(duration_ms) as min_duration,
          AVG(result_count) as avg_results,
          COUNT(*) FILTER (WHERE cache_hit = true) as cache_hits,
          COUNT(*) FILTER (WHERE error_message IS NOT NULL) as errors
        FROM query_performance
        WHERE created_at >= NOW() - INTERVAL '1 hour'
        GROUP BY query_type, operation_name;
      `
    })
    
    if (error) throw error
    await this.metricsStore.setupTimeSeriesTables()
  }
  
  async trackQuery(
    queryType: string,
    operationName: string,
    duration: number,
    resultCount: number,
    cacheHit: boolean = false,
    error?: string,
    userId?: string,
    sessionId?: string
  ) {
    // Store detailed query performance
    await this.supabase
      .from('query_performance')
      .insert([{
        query_type: queryType,
        operation_name: operationName,
        duration_ms: duration,
        result_count: resultCount,
        cache_hit: cacheHit,
        error_message: error,
        user_id: userId,
        session_id: sessionId
      }])
    
    // Store time-series metrics
    await this.metricsStore.writeMetrics([
      {
        metricName: `query_duration_${queryType}`,
        value: duration,
        tags: { operation: operationName, cache_hit: cacheHit.toString() }
      },
      {
        metricName: `query_count_${queryType}`,
        value: 1,
        tags: { operation: operationName }
      },
      {
        metricName: `result_count_${queryType}`,
        value: resultCount,
        tags: { operation: operationName }
      }
    ])
  }
  
  async healthCheck(): Promise<{
    status: 'healthy' | 'degraded' | 'unhealthy'
    components: Record<string, any>
    overall_score: number
  }> {
    const components = {
      database: await this.checkDatabaseHealth(),
      vector_search: await this.checkVectorSearchHealth(),
      cache: await this.checkCacheHealth(),
      performance: await this.checkPerformanceHealth()
    }
    
    // Calculate overall health score
    const scores = Object.values(components).map(c => c.score)
    const overallScore = scores.reduce((sum, score) => sum + score, 0) / scores.length
    
    let status: 'healthy' | 'degraded' | 'unhealthy'
    if (overallScore >= 0.8) {
      status = 'healthy'
    } else if (overallScore >= 0.6) {
      status = 'degraded'
    } else {
      status = 'unhealthy'
    }
    
    // Store health check results
    await this.supabase
      .from('system_health')
      .upsert([
        {
          component: 'overall',
          status,
          metrics: {
            score: overallScore,
            components,
            timestamp: new Date().toISOString()
          }
        }
      ])
    
    return {
      status,
      components,
      overall_score: overallScore
    }
  }
  
  private async checkDatabaseHealth() {
    const start = Date.now()
    
    try {
      // Test basic connectivity
      const { data, error } = await this.supabase
        .from('vector_documents')
        .select('count(*)')
        .limit(1)
      
      const latency = Date.now() - start
      
      if (error) {
        return {
          status: 'unhealthy',
          score: 0,
          latency,
          error: error.message
        }
      }
      
      // Check if latency is acceptable
      const score = latency < 100 ? 1 : (latency < 500 ? 0.7 : 0.3)
      
      return {
        status: score >= 0.7 ? 'healthy' : 'degraded',
        score,
        latency,
        connection_count: data?.[0]?.count || 0
      }
      
    } catch (error) {
      return {
        status: 'unhealthy',
        score: 0,
        error: (error as Error).message
      }
    }
  }
  
  private async checkVectorSearchHealth() {
    const start = Date.now()
    
    try {
      // Test vector similarity search
      const { data, error } = await this.supabase.rpc('vector_similarity_search', {
        query_embedding: new Array(1536).fill(0.1), // Test embedding
        match_threshold: 0.5,
        match_count: 1
      })
      
      const latency = Date.now() - start
      
      if (error) {
        return {
          status: 'unhealthy',
          score: 0,
          latency,
          error: error.message
        }
      }
      
      const score = latency < 200 ? 1 : (latency < 1000 ? 0.7 : 0.3)
      
      return {
        status: score >= 0.7 ? 'healthy' : 'degraded',
        score,
        latency,
        result_count: data?.length || 0
      }
      
    } catch (error) {
      return {
        status: 'unhealthy',
        score: 0,
        error: (error as Error).message
      }
    }
  }
  
  async getPerformanceReport(hours: number = 24) {
    const { data, error } = await this.supabase
      .from('real_time_performance')
      .select('*')
      .gte('created_at', new Date(Date.now() - hours * 60 * 60 * 1000).toISOString())
    
    if (error) throw error
    return data
  }
}

Supabase Advantages for AI/ML Workloads

Unified Data Platform Benefits

  • Native Vector Support: pgvector extension provides enterprise-grade vector storage and search
  • ACID Transactions: Full PostgreSQL ACID guarantees for consistent data operations
  • Real-time Subscriptions: Built-in real-time data synchronization across applications
  • Scalable Architecture: Automatic scaling with connection pooling and read replicas
  • Edge Deployment: Global CDN and edge functions for low-latency access
  • Integrated Auth: Row-level security and built-in authentication system
  • Rich Data Types: JSONB, arrays, time-series, and custom types in a single database
  • Performance: Optimized queries with specialized indexes (GIN, BRIN, ivfflat)
  • Cost Effective: Eliminate multiple database licensing and operational overhead

Migration Path from Traditional Systems

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
-- Migrate from Pinecone to Supabase pgvector
CREATE OR REPLACE FUNCTION migrate_from_pinecone(
  pinecone_data JSONB[]
)
RETURNS INTEGER AS $$
DECLARE
  inserted_count INTEGER;
BEGIN
  INSERT INTO vector_documents (content, embedding, metadata, collection_name)
  SELECT 
    item->>'content',
    ARRAY(SELECT jsonb_array_elements_text(item->'values'))::VECTOR(1536),
    item->'metadata',
    'migrated_from_pinecone'
  FROM unnest(pinecone_data) AS item;
  
  GET DIAGNOSTICS inserted_count = ROW_COUNT;
  RETURN inserted_count;
END;
$$ LANGUAGE plpgsql;

-- Migrate from Elasticsearch to Supabase full-text search
CREATE OR REPLACE FUNCTION migrate_from_elasticsearch(
  es_documents JSONB[]
)
RETURNS INTEGER AS $$
DECLARE
  inserted_count INTEGER;
BEGIN
  INSERT INTO documents (title, content, metadata, tags, collection_name)
  SELECT 
    item->>'title',
    item->'_source',
    item->'metadata',
    ARRAY(SELECT jsonb_array_elements_text(item->'tags')),
    'migrated_from_es'
  FROM unnest(es_documents) AS item;
  
  GET DIAGNOSTICS inserted_count = ROW_COUNT;
  RETURN inserted_count;
END;
$$ LANGUAGE plpgsql;

Next Steps

Supabase provides a unified, scalable foundation for all AIMatrix data needs, eliminating the complexity of managing multiple specialized databases while providing enterprise-grade performance and features.