AMX Engine 4.0 - Next-Generation Architecture

AMX Engine 4.0 - Next-Generation Architecture

AMX Engine 4.0 represents a fundamental architectural evolution, transforming from a traditional monolithic simulation engine to a unified container orchestration platform that combines the best of Kubernetes pod management, MATLAB Simulink visual modeling, Unity’s component architecture, AnyLogic’s multi-method simulation, and Simul8’s process optimization.

Architectural Philosophy

From Separate Products to Integrated Components

Previous Architecture (v3.x):

  • AMX Engine: Standalone simulation platform
  • ARE (Agent Runtime Environment): Separate product for agent execution
  • TRE (Twin Runtime Environment): Separate product for twin simulation
  • Knowledge distribution: External CQRS system
  • Limited cross-runtime communication

New Architecture (v4.0):

  • AMX Engine: Unified orchestration platform
  • ARE: Internal runtime environment component
  • TRE: Internal runtime environment component
  • Knowledge Management: Integrated CQRS system
  • Multi-Language SDKs: Native support for Kotlin, Python, TypeScript
  • Workspace Integration: Git-based development with Docker containerization

Core Architectural Principles

1. Unity Engine Inspiration - Component-Based Design

  graph TB
    subgraph "AMX Engine (Unity-style GameObject)"
        CONTROL[Control Plane - Game Engine]
        subgraph "Runtime Components (Components)"
            ARE[ARE Component]
            TRE[TRE Component] 
            BRIDGE[Cross-Runtime Bridge]
        end
        subgraph "System Components (Systems)"
            SCHEDULER[Workload Scheduler]
            KNOWLEDGE[Knowledge Manager]
            ORCHESTRATOR[Container Orchestrator]
        end
    end
    
    CONTROL --> ARE
    CONTROL --> TRE
    CONTROL --> SCHEDULER
    CONTROL --> KNOWLEDGE
    CONTROL --> ORCHESTRATOR
    
    ARE <--> BRIDGE
    TRE <--> BRIDGE

2. Kubernetes Inspiration - Container Orchestration

  graph TB
    subgraph "AMX Engine Control Plane (Kubernetes Master)"
        API[API Server]
        ETCD[Configuration Store]
        SCHEDULER[Workload Scheduler]
        CONTROLLER[Runtime Controller]
    end
    
    subgraph "Worker Nodes"
        subgraph "Node 1"
            KUBELET1[AMX Runtime Shim]
            PODS1[Agent/Twin Pods]
        end
        subgraph "Node 2"
            KUBELET2[AMX Runtime Shim]
            PODS2[Agent/Twin Pods]
        end
    end
    
    subgraph "Service Mesh"
        ISTIO[Cross-Runtime Communication]
        INGRESS[Load Balancer]
    end
    
    API --> SCHEDULER
    SCHEDULER --> CONTROLLER
    CONTROLLER --> KUBELET1
    CONTROLLER --> KUBELET2
    
    KUBELET1 --> PODS1
    KUBELET2 --> PODS2
    
    PODS1 <--> ISTIO
    PODS2 <--> ISTIO
    INGRESS --> ISTIO

3. MATLAB Simulink Inspiration - Visual Block Modeling

  graph LR
    subgraph "Agent Block (Simulink Block)"
        INPUT[Input Ports]
        LOGIC[Processing Logic]
        OUTPUT[Output Ports]
    end
    
    subgraph "Twin Block (Simulink Block)"
        SIM_INPUT[Simulation Inputs]
        SIM_ENGINE[Simulation Engine]
        SIM_OUTPUT[Simulation Results]
    end
    
    subgraph "Knowledge Block (Simulink Block)"
        QUERY_IN[Query Input]
        KNOWLEDGE_ENGINE[CQRS Engine]
        DATA_OUT[Knowledge Output]
    end
    
    INPUT --> LOGIC
    LOGIC --> OUTPUT
    OUTPUT --> SIM_INPUT
    
    SIM_INPUT --> SIM_ENGINE
    SIM_ENGINE --> SIM_OUTPUT
    SIM_OUTPUT --> QUERY_IN
    
    QUERY_IN --> KNOWLEDGE_ENGINE
    KNOWLEDGE_ENGINE --> DATA_OUT
    DATA_OUT --> INPUT

Detailed Component Architecture

AMX Engine Control Plane

The control plane manages the entire platform, inspired by Kubernetes’ master node architecture:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
// AMX Engine Control Plane
class AMXEngineControlPlane(
    private val apiServer: APIServer,
    private val scheduler: WorkloadScheduler,
    private val runtimeController: RuntimeController,
    private val knowledgeManager: KnowledgeManager
) {
    
    suspend fun initialize() {
        // Initialize core components
        apiServer.start()
        scheduler.initialize()
        runtimeController.start()
        knowledgeManager.initializeCQRS()
        
        // Register runtime environments as internal components
        runtimeController.registerRuntimeEnvironment(
            name = "ARE",
            type = AgentRuntimeEnvironment::class,
            config = AREConfiguration()
        )
        
        runtimeController.registerRuntimeEnvironment(
            name = "TRE", 
            type = TwinRuntimeEnvironment::class,
            config = TREConfiguration()
        )
        
        // Set up cross-runtime communication bridge
        val bridge = CrossRuntimeBridge(
            areRuntime = runtimeController.getRuntime("ARE"),
            treRuntime = runtimeController.getRuntime("TRE"),
            knowledgeManager = knowledgeManager
        )
        
        runtimeController.enableCrossRuntimeBridge(bridge)
    }
    
    suspend fun deployWorkload(spec: WorkloadSpec): DeploymentResult {
        // Intelligent runtime selection
        val targetRuntime = scheduler.selectOptimalRuntime(spec)
        
        return when (targetRuntime) {
            "ARE" -> deployToARERuntime(spec)
            "TRE" -> deployToTRERuntime(spec)
            else -> throw UnsupportedRuntimeException("Unknown runtime: $targetRuntime")
        }
    }
}

Integrated Agent Runtime Environment (ARE)

ARE is now an internal component of AMX Engine, providing container-based agent execution:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
// ARE as Internal Component
class AgentRuntimeEnvironment : RuntimeEnvironment {
    private val containerOrchestrator: ContainerOrchestrator
    private val agentLifecycleManager: AgentLifecycleManager
    private val networkPolicyManager: NetworkPolicyManager
    
    override suspend fun deployWorkload(spec: AgentDeploymentSpec): DeploymentResult {
        // Create container specification (Kubernetes-style)
        val containerSpec = ContainerSpec(
            image = resolveAgentImage(spec.language, spec.runtime),
            resources = ResourceRequirements(
                requests = spec.resources.requests,
                limits = spec.resources.limits
            ),
            securityContext = SecurityContext(
                runAsNonRoot = true,
                readOnlyRootFilesystem = true,
                capabilities = CapabilitySet.minimal()
            ),
            volumes = createVolumes(spec),
            environment = createEnvironment(spec)
        )
        
        // Deploy as pod (Kubernetes-style)
        val pod = Pod(
            metadata = PodMetadata(
                name = generatePodName(spec.name),
                namespace = spec.namespace,
                labels = mapOf(
                    "app" to spec.name,
                    "runtime" to "are",
                    "language" to spec.language
                )
            ),
            spec = PodSpec(
                containers = listOf(containerSpec),
                restartPolicy = RestartPolicy.Always,
                serviceAccountName = spec.serviceAccount
            )
        )
        
        return containerOrchestrator.deployPod(pod)
    }
    
    override suspend fun scaleWorkload(
        workloadId: String, 
        targetReplicas: Int
    ): ScalingResult {
        return agentLifecycleManager.scale(workloadId, targetReplicas)
    }
}

Integrated Twin Runtime Environment (TRE)

TRE is now an internal component providing discrete event simulation capabilities:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
// TRE as Internal Component
class TwinRuntimeEnvironment : RuntimeEnvironment {
    private val simulationEngine: MultiMethodSimulationEngine
    private val timeManager: DistributedTimeManager
    private val scenarioManager: ScenarioManager
    
    override suspend fun deployWorkload(spec: TwinDeploymentSpec): DeploymentResult {
        // Initialize simulation environment (AnyLogic-inspired)
        val simEnvironment = simulationEngine.createEnvironment(
            method = determineSimulationMethod(spec),
            timeControl = spec.simulation.timeControl,
            realTimeSync = spec.simulation.realTimeSync
        )
        
        // Set up discrete event simulation (Simul8-inspired)
        val twinModel = when (spec.twinType) {
            TwinType.PROCESS -> createProcessTwin(spec, simEnvironment)
            TwinType.SUPPLY_CHAIN -> createSupplyChainTwin(spec, simEnvironment)
            TwinType.FINANCIAL -> createFinancialTwin(spec, simEnvironment)
            TwinType.ORGANIZATIONAL -> createOrganizationalTwin(spec, simEnvironment)
        }
        
        // Deploy in container (maintaining consistency with ARE)
        val containerSpec = ContainerSpec(
            image = "aimatrix/tre-runtime:latest",
            resources = spec.resources,
            environment = mapOf(
                "TWIN_TYPE" to spec.twinType.name,
                "SIMULATION_METHOD" to spec.simulation.method,
                "TIME_CONTROL" to spec.simulation.timeControl.toString()
            ),
            volumes = createSimulationVolumes(spec)
        )
        
        return containerOrchestrator.deployPod(createTwinPod(containerSpec, spec))
    }
    
    private fun determineSimulationMethod(spec: TwinDeploymentSpec): SimulationMethod {
        return when {
            spec.hasAgentBasedElements() -> SimulationMethod.AGENT_BASED
            spec.hasDiscreteEvents() -> SimulationMethod.DISCRETE_EVENT
            spec.hasSystemDynamics() -> SimulationMethod.SYSTEM_DYNAMICS
            spec.requiresMultiMethod() -> SimulationMethod.MULTI_METHOD
            else -> SimulationMethod.DISCRETE_EVENT
        }
    }
}

Multi-Language SDK Architecture

SDK Unified Interface

All SDKs share a common interface but are optimized for their respective languages:

  graph TB
    subgraph "Unified SDK Interface"
        AGENT_API[Agent API]
        TWIN_API[Twin API] 
        KNOWLEDGE_API[Knowledge API]
        RUNTIME_API[Runtime API]
    end
    
    subgraph "Language-Specific Implementations"
        subgraph "Kotlin SDK"
            KOTLIN_AGENT[Coroutine-based Agents]
            KOTLIN_TWIN[Kalasim Integration]
            KOTLIN_KNOWLEDGE[Type-safe Queries]
        end
        
        subgraph "Python SDK"
            PYTHON_AGENT[AsyncIO Agents]
            PYTHON_TWIN[ML-Optimized Twins]
            PYTHON_KNOWLEDGE[Pandas/NumPy Integration]
        end
        
        subgraph "TypeScript SDK"
            TS_AGENT[Promise-based Agents]
            TS_TWIN[Web-Optimized Twins]
            TS_KNOWLEDGE[JSON-Native Queries]
        end
    end
    
    AGENT_API --> KOTLIN_AGENT
    AGENT_API --> PYTHON_AGENT
    AGENT_API --> TS_AGENT
    
    TWIN_API --> KOTLIN_TWIN
    TWIN_API --> PYTHON_TWIN
    TWIN_API --> TS_TWIN
    
    KNOWLEDGE_API --> KOTLIN_KNOWLEDGE
    KNOWLEDGE_API --> PYTHON_KNOWLEDGE
    KNOWLEDGE_API --> TS_KNOWLEDGE

Cross-Language Interoperability

The platform enables seamless communication between agents and twins written in different languages:

  sequenceDiagram
    participant KA as Kotlin Agent (ARE)
    participant Bridge as Cross-Runtime Bridge
    participant PT as Python Twin (TRE)
    participant KM as Knowledge Manager
    
    KA->>Bridge: Request simulation
    Bridge->>KM: Fetch context data
    KM->>Bridge: Return knowledge
    Bridge->>PT: Execute simulation with data
    PT->>Bridge: Return simulation results
    Bridge->>KM: Store results
    Bridge->>KA: Return processed results

Container Orchestration Layer

Pod Management (Kubernetes-Inspired)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Example agent pod specification
apiVersion: aimatrix.com/v1
kind: AgentPod
metadata:
  name: risk-analysis-agent-abc123
  namespace: financial-services
  labels:
    app: risk-analysis
    runtime: are
    language: kotlin
    version: "1.2.0"
spec:
  containers:
  - name: agent
    image: aimatrix/kotlin-agent-runtime:latest
    ports:
    - containerPort: 8080
      name: http
    - containerPort: 9090
      name: grpc
    resources:
      requests:
        cpu: "500m"
        memory: "1Gi"
      limits:
        cpu: "2000m"
        memory: "4Gi"
    env:
    - name: AGENT_CLASS
      value: "com.company.RiskAnalysisAgent"
    - name: KNOWLEDGE_ENDPOINT
      value: "http://knowledge-manager:8080"
    - name: RUNTIME_ENVIRONMENT
      value: "ARE"
    volumeMounts:
    - name: agent-code
      mountPath: /app/agents
      readOnly: true
    - name: knowledge-cache
      mountPath: /app/knowledge
    securityContext:
      runAsNonRoot: true
      runAsUser: 65532
      readOnlyRootFilesystem: true
      allowPrivilegeEscalation: false
      capabilities:
        drop: ["ALL"]
  volumes:
  - name: agent-code
    configMap:
      name: risk-analysis-agent-code
  - name: knowledge-cache
    emptyDir:
      sizeLimit: 1Gi
  restartPolicy: Always
  serviceAccountName: agent-service-account

Service Mesh Integration

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Service mesh configuration for cross-runtime communication
apiVersion: networking.istio.io/v1beta1
kind: VirtualService
metadata:
  name: cross-runtime-routing
spec:
  hosts:
  - amx-engine
  http:
  - match:
    - headers:
        source-runtime:
          exact: "ARE"
        target-runtime:
          exact: "TRE"
    route:
    - destination:
        host: tre-runtime-service
        port:
          number: 8080
      weight: 100
    fault:
      delay:
        percentage:
          value: 0.1
        fixedDelay: 5s
  - match:
    - headers:
        source-runtime:
          exact: "TRE"
        target-runtime:
          exact: "ARE"
    route:
    - destination:
        host: are-runtime-service
        port:
          number: 8080
      weight: 100

Knowledge Management & CQRS Integration

Event-Sourced Knowledge Distribution

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
// CQRS Knowledge Management System
class KnowledgeManager(
    private val eventStore: EventStore,
    private val queryProjectors: List<QueryProjector>,
    private val commandHandlers: Map<String, CommandHandler>
) {
    
    suspend fun executeCommand(command: KnowledgeCommand): CommandResult {
        val handler = commandHandlers[command.type] 
            ?: throw UnknownCommandException(command.type)
        
        // Execute command and generate events
        val events = handler.handle(command)
        
        // Store events in event store
        events.forEach { event ->
            eventStore.append(event)
        }
        
        // Notify projectors (eventually consistent)
        events.forEach { event ->
            queryProjectors.forEach { projector ->
                projector.projectAsync(event)
            }
        }
        
        return CommandResult.Success(events.size)
    }
    
    suspend fun executeQuery(query: KnowledgeQuery): QueryResult {
        return when (query) {
            is CapsuleQuery -> executeCapsuleQuery(query)
            is VectorQuery -> executeVectorQuery(query)
            is TimeSeriesQuery -> executeTimeSeriesQuery(query)
            else -> throw UnsupportedQueryException(query.type)
        }
    }
    
    // Cross-runtime knowledge distribution
    suspend fun distributeToRuntime(
        knowledge: KnowledgeUpdate,
        targetRuntime: RuntimeType
    ) {
        when (targetRuntime) {
            RuntimeType.ARE -> distributeToARECache(knowledge)
            RuntimeType.TRE -> distributeToTRECache(knowledge)
            RuntimeType.ALL -> {
                distributeToARECache(knowledge)
                distributeToTRECache(knowledge)
            }
        }
    }
}

Workspace-Driven Development

Git-Based Workspace Structure

enterprise-aimatrix-project/
├── .aimatrix/
│   ├── config.yaml                    # AMX Engine configuration
│   ├── security/
│   │   ├── policies.yaml             # Security policies
│   │   ├── rbac.yaml                 # Role-based access control
│   │   └── secrets.yaml              # Secret management config
│   ├── docker/
│   │   ├── kotlin-agent.Dockerfile    # Kotlin agent container
│   │   ├── python-agent.Dockerfile   # Python agent container
│   │   ├── typescript-agent.Dockerfile # TypeScript agent container
│   │   └── twin.Dockerfile           # Twin container template
│   ├── k8s/
│   │   ├── namespace.yaml            # Kubernetes namespace
│   │   ├── rbac.yaml                 # Kubernetes RBAC
│   │   ├── network-policies.yaml     # Network policies
│   │   └── ingress.yaml              # Ingress configuration
│   └── monitoring/
│       ├── prometheus.yaml           # Metrics configuration
│       ├── grafana-dashboards/       # Custom dashboards
│       └── alerts.yaml              # Alerting rules
├── agents/                          # Multi-language agents
│   ├── kotlin/
│   │   ├── build.gradle.kts          # Kotlin build configuration
│   │   ├── src/main/kotlin/
│   │   │   ├── RiskAnalysisAgent.kt
│   │   │   ├── ComplianceAgent.kt
│   │   │   └── FraudDetectionAgent.kt
│   │   └── deployment.yaml          # Kubernetes deployment spec
│   ├── python/
│   │   ├── pyproject.toml           # Python project configuration
│   │   ├── requirements.txt         # Python dependencies
│   │   ├── src/
│   │   │   ├── predictive_agent.py
│   │   │   ├── analytics_agent.py
│   │   │   └── ml_training_agent.py
│   │   └── deployment.yaml          # Kubernetes deployment spec
│   ├── typescript/
│   │   ├── package.json             # Node.js configuration
│   │   ├── tsconfig.json            # TypeScript configuration
│   │   ├── src/
│   │   │   ├── web-agent.ts
│   │   │   ├── api-integration-agent.ts
│   │   │   └── realtime-agent.ts
│   │   └── deployment.yaml          # Kubernetes deployment spec
│   ├── csharp/
│   │   ├── CustomerService.csproj   # C# project configuration
│   │   ├── appsettings.json         # Application settings
│   │   ├── src/
│   │   │   ├── EnterpriseAgent.cs
│   │   │   ├── IntegrationAgent.cs
│   │   │   └── ComplianceAgent.cs
│   │   └── deployment.yaml          # Kubernetes deployment spec
│   └── java/
│       ├── pom.xml                  # Maven configuration
│       ├── application.properties   # Spring Boot configuration
│       ├── src/main/java/
│       │   ├── CustomerServiceAgent.java
│       │   ├── AnalyticsAgent.java
│       │   └── IntegrationAgent.java
│       └── deployment.yaml          # Kubernetes deployment spec
├── twins/                           # Multi-language digital twins
│   ├── kotlin/
│   │   └── SupplyChainTwin.kt
│   ├── python/
│   │   ├── predictive_twin.py
│   │   └── optimization_twin.py
│   ├── typescript/
│   │   └── dashboard-twin.ts
│   ├── csharp/
│   │   └── ManufacturingTwin.cs
│   └── java/
│       └── SupplyChainTwin.java
├── knowledge/                       # Knowledge management
│   ├── capsules/                    # Knowledge capsules
│   │   ├── customer-data.yaml
│   │   ├── product-catalog.yaml
│   │   └── market-intelligence.yaml
│   ├── schemas/                     # Data schemas
│   │   ├── customer.json
│   │   ├── product.json
│   │   └── transaction.json
│   └── policies/                    # Distribution policies
│       ├── data-classification.yaml
│       ├── access-control.yaml
│       └── retention-policies.yaml
├── tests/                          # Integration tests
│   ├── agents/
│   ├── twins/
│   └── e2e/
├── docs/                           # Project documentation
│   ├── architecture.md
│   ├── deployment.md
│   └── api-reference.md
├── docker-compose.dev.yaml         # Development stack
├── docker-compose.prod.yaml        # Production stack
└── README.md                       # Project overview

Performance and Scalability

Resource Management (Kubernetes-Inspired)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
// Resource allocation and management
class ResourceManager {
    
    suspend fun allocateResources(
        workloadSpec: WorkloadSpec
    ): ResourceAllocation {
        
        val nodeResources = getAvailableNodeResources()
        val optimalNode = selectOptimalNode(nodeResources, workloadSpec)
        
        return ResourceAllocation(
            nodeId = optimalNode.id,
            cpuAllocation = CpuAllocation(
                requests = workloadSpec.resources.cpu.requests,
                limits = workloadSpec.resources.cpu.limits,
                cpuSet = allocateCpuSet(optimalNode, workloadSpec)
            ),
            memoryAllocation = MemoryAllocation(
                requests = workloadSpec.resources.memory.requests,
                limits = workloadSpec.resources.memory.limits,
                memoryType = if (workloadSpec.requiresHighPerformance) 
                    MemoryType.HUGE_PAGES else MemoryType.STANDARD
            ),
            storageAllocation = StorageAllocation(
                volumeMounts = createVolumeMounts(workloadSpec),
                persistentVolumes = createPersistentVolumes(workloadSpec)
            ),
            networkAllocation = NetworkAllocation(
                bandwidth = workloadSpec.resources.network.bandwidth,
                policies = createNetworkPolicies(workloadSpec)
            )
        )
    }
}

Auto-Scaling (HPA-Inspired)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Horizontal Pod Autoscaler for agents
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler  
metadata:
  name: risk-analysis-agent-hpa
spec:
  scaleTargetRef:
    apiVersion: aimatrix.com/v1
    kind: AgentDeployment
    name: risk-analysis-agent
  minReplicas: 2
  maxReplicas: 20
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 80
  - type: Pods
    pods:
      metric:
        name: agent_queue_length
      target:
        type: AverageValue
        averageValue: "10"
  behavior:
    scaleUp:
      stabilizationWindowSeconds: 60
      policies:
      - type: Percent
        value: 100
        periodSeconds: 15
    scaleDown:
      stabilizationWindowSeconds: 300
      policies:
      - type: Percent
        value: 10
        periodSeconds: 60

Security Architecture

Zero-Trust Network (Istio-Inspired)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Zero-trust security policies
apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
  name: amx-engine-mutual-tls
  namespace: aimatrix-system
spec:
  mtls:
    mode: STRICT

---
apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
  name: cross-runtime-authorization
  namespace: aimatrix-system
spec:
  rules:
  - from:
    - source:
        principals: ["cluster.local/ns/aimatrix-system/sa/are-service-account"]
    to:
    - operation:
        methods: ["POST", "GET"]
    when:
    - key: request.headers[runtime-source]
      values: ["ARE"]
  - from:
    - source:
        principals: ["cluster.local/ns/aimatrix-system/sa/tre-service-account"]
    to:
    - operation:
        methods: ["POST", "GET"]
    when:
    - key: request.headers[runtime-source]
      values: ["TRE"]

Migration Strategy

From v3.x to v4.0

  graph LR
    subgraph "Current v3.x"
        ENGINE_V3[AMX Engine v3]
        ARE_SEPARATE[ARE - Separate Product]
        TRE_SEPARATE[TRE - Separate Product]
        KNOWLEDGE_EXTERNAL[External CQRS]
    end
    
    subgraph "Migration Tools"
        MIGRATION_CLI[Migration CLI]
        CONFIG_CONVERTER[Config Converter]
        DATA_MIGRATOR[Data Migrator]
        VALIDATION_SUITE[Validation Suite]
    end
    
    subgraph "Target v4.0"
        ENGINE_V4[AMX Engine v4 - Unified Platform]
        ARE_INTEGRATED[ARE - Internal Component]
        TRE_INTEGRATED[TRE - Internal Component]
        KNOWLEDGE_INTEGRATED[Integrated CQRS]
        MULTI_LANG_SDK[Multi-Language SDKs]
    end
    
    ENGINE_V3 --> MIGRATION_CLI
    ARE_SEPARATE --> CONFIG_CONVERTER
    TRE_SEPARATE --> DATA_MIGRATOR
    KNOWLEDGE_EXTERNAL --> VALIDATION_SUITE
    
    MIGRATION_CLI --> ENGINE_V4
    CONFIG_CONVERTER --> ARE_INTEGRATED
    DATA_MIGRATOR --> TRE_INTEGRATED
    VALIDATION_SUITE --> KNOWLEDGE_INTEGRATED
    
    ENGINE_V4 --> MULTI_LANG_SDK

Future Roadmap

Phase 1: Foundation (Q2 2025)

  • ✅ Unified AMX Engine 4.0 platform
  • ✅ Integrated ARE/TRE runtime environments
  • ✅ Multi-language SDK support (Kotlin, Python, TypeScript)
  • ✅ Container orchestration layer
  • ✅ CQRS knowledge management integration

Phase 2: Enhancement (Q3 2025)

  • GPU Acceleration: CUDA support for ML-heavy agents and twins
  • Edge Deployment: Lightweight runtime for edge computing scenarios
  • Advanced Networking: Service mesh with advanced traffic management
  • Observability: Enhanced monitoring, tracing, and debugging tools
  • Visual Designer: Low-code/no-code agent and twin creation interface

Phase 3: Enterprise (Q4 2025)

  • Multi-Cluster Federation: Cross-region deployment and management
  • Advanced Security: Hardware security modules, attestation, compliance frameworks
  • Performance Optimization: JIT compilation, memory optimization, network acceleration
  • Ecosystem Integration: Third-party plugin system, marketplace, certification program

Phase 4: Innovation (Q1 2026)

  • Quantum-Classical Hybrid: Integration with quantum computing platforms
  • AI-Driven Optimization: Self-optimizing agents and twins
  • Autonomous Evolution: Self-improving system capabilities
  • Industry Standards: Contribution to open standards for AI system orchestration

AMX Engine 4.0 represents the convergence of container orchestration, multi-method simulation, and intelligent knowledge management into a unified platform that scales from development laptops to enterprise data centers. By integrating the best architectural patterns from proven systems like Kubernetes, MATLAB Simulink, Unity Engine, AnyLogic, and Simul8, we’ve created a next-generation foundation for AI-driven business systems.