Observability for Intelligent Systems: Monitoring AI Agent Behavior

Observability for intelligent systems presents unique challenges that go beyond traditional software monitoring. Unlike deterministic applications, AI agents exhibit emergent behaviors, make probabilistic decisions, and adapt their strategies over time. Traditional metrics like CPU usage and response time, while important, provide an incomplete picture of an AI system’s health and effectiveness.

This comprehensive guide explores the specialized observability requirements for AI agent systems, covering behavioral monitoring, performance tracking, anomaly detection, and the infrastructure needed to maintain visibility into complex, autonomous systems at scale.

The AI Observability Challenge

Traditional observability focuses on the three pillars: metrics, logs, and traces. For AI systems, we need to extend this model to include behavioral patterns, decision quality, and learning progression.

Traditional vs AI System Observability:

Traditional System:
┌─────────────────────────────────────────────────────────────┐
│ Traditional Observability Stack                             │
├─────────────────────────────────────────────────────────────┤
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐            │
│ │ Metrics     │ │ Logs        │ │ Traces      │            │
│ │ • CPU/RAM   │ │ • Error     │ │ • Request   │            │
│ │ • Network   │ │   Messages  │ │   Flow      │            │
│ │ • Disk I/O  │ │ • Debug     │ │ • Latency   │            │
│ │ • Response  │ │   Info      │ │   Breakdown │            │
│ │   Time      │ │             │ │             │            │
│ └─────────────┘ └─────────────┘ └─────────────┘            │
└─────────────────────────────────────────────────────────────┘

AI Agent System:
┌─────────────────────────────────────────────────────────────┐
│ AI System Observability Stack                               │
├─────────────────────────────────────────────────────────────┤
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐            │
│ │ Traditional │ │ Behavioral  │ │ Cognitive   │            │
│ │ Metrics     │ │ Metrics     │ │ Metrics     │            │
│ │ • Infra     │ │ • Decision  │ │ • Model     │            │
│ │ • Latency   │ │   Quality   │ │   Accuracy  │            │
│ │ • Errors    │ │ • Goal      │ │ • Confidence│            │
│ │             │ │   Achievement│ │ • Drift     │            │
│ │             │ │ • Interaction│ │ • Bias      │            │
│ │             │ │   Patterns  │ │             │            │
│ └─────────────┘ └─────────────┘ └─────────────┘            │
│                                                             │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐            │
│ │ Agent Logs  │ │ Decision    │ │ Learning    │            │
│ │ • Reasoning │ │ Traces      │ │ Traces      │            │
│ │ • Actions   │ │ • Context   │ │ • Training  │            │
│ │ • Context   │ │ • Options   │ │   Progress  │            │
│ │ • Failures  │ │ • Rationale │ │ • Adaptation│            │
│ │             │ │             │ │   Events    │            │
│ └─────────────┘ └─────────────┘ └─────────────┘            │
└─────────────────────────────────────────────────────────────┘

AI Agent Observability Framework

Here’s a comprehensive framework for monitoring AI agent systems:

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
import asyncio
import time
import json
import logging
from typing import Dict, List, Optional, Any, Union, Callable
from dataclasses import dataclass, field, asdict
from enum import Enum
from collections import defaultdict, deque
import numpy as np
from datetime import datetime, timedelta
import uuid

class ObservabilityLevel(Enum):
    DEBUG = "debug"
    INFO = "info" 
    WARNING = "warning"
    ERROR = "error"
    CRITICAL = "critical"

class MetricType(Enum):
    GAUGE = "gauge"
    COUNTER = "counter"
    HISTOGRAM = "histogram"
    SUMMARY = "summary"

class EventType(Enum):
    DECISION = "decision"
    ACTION = "action"
    LEARNING = "learning"
    ERROR = "error"
    PERFORMANCE = "performance"
    BEHAVIOR_ANOMALY = "behavior_anomaly"

@dataclass
class AgentEvent:
    """Single agent event with context and metadata"""
    id: str
    timestamp: datetime
    agent_id: str
    event_type: EventType
    data: Dict[str, Any]
    context: Dict[str, Any] = field(default_factory=dict)
    tags: Dict[str, str] = field(default_factory=dict)
    severity: ObservabilityLevel = ObservabilityLevel.INFO

@dataclass
class BehaviorPattern:
    """Detected behavioral pattern in agent actions"""
    pattern_id: str
    agent_id: str
    pattern_type: str
    frequency: float
    confidence: float
    first_seen: datetime
    last_seen: datetime
    examples: List[Dict[str, Any]] = field(default_factory=list)
    anomaly_score: float = 0.0

@dataclass
class PerformanceMetric:
    """Performance metric with statistical properties"""
    name: str
    value: float
    metric_type: MetricType
    timestamp: datetime
    tags: Dict[str, str] = field(default_factory=dict)
    percentiles: Optional[Dict[str, float]] = None

class AIAgentObservabilityCollector:
    """Core observability data collection for AI agents"""
    
    def __init__(self, config: Dict[str, Any]):
        self.config = config
        self.agent_id = config.get('agent_id', 'unknown')
        
        # Event storage
        self.events: deque = deque(maxlen=config.get('max_events', 10000))
        self.metrics: Dict[str, deque] = defaultdict(lambda: deque(maxlen=1000))
        
        # Pattern detection
        self.pattern_detector = BehaviorPatternDetector(config.get('pattern_detection', {}))
        self.anomaly_detector = AnomalyDetector(config.get('anomaly_detection', {}))
        
        # Performance tracking
        self.performance_tracker = PerformanceTracker(config.get('performance', {}))
        
        # Decision context tracking
        self.decision_contexts: Dict[str, Dict[str, Any]] = {}
        self.decision_outcomes: Dict[str, Dict[str, Any]] = {}
        
        # Learning progress tracking
        self.learning_metrics = LearningProgressTracker()
        
    async def record_decision(self, 
                            decision_id: str,
                            context: Dict[str, Any],
                            options: List[Dict[str, Any]],
                            selected_option: Dict[str, Any],
                            confidence: float,
                            reasoning: Optional[str] = None) -> None:
        """Record an agent decision with full context"""
        
        # Store decision context for outcome correlation
        self.decision_contexts[decision_id] = {
            'timestamp': datetime.now(),
            'context': context,
            'options': options,
            'selected_option': selected_option,
            'confidence': confidence,
            'reasoning': reasoning
        }
        
        # Create decision event
        event = AgentEvent(
            id=str(uuid.uuid4()),
            timestamp=datetime.now(),
            agent_id=self.agent_id,
            event_type=EventType.DECISION,
            data={
                'decision_id': decision_id,
                'options_count': len(options),
                'confidence': confidence,
                'selected_option_id': selected_option.get('id'),
                'reasoning_length': len(reasoning) if reasoning else 0
            },
            context=context,
            tags={'decision_type': selected_option.get('type', 'unknown')}
        )
        
        await self._record_event(event)
        
        # Update decision quality metrics
        await self.performance_tracker.update_decision_metrics(
            confidence, len(options), selected_option
        )
    
    async def record_action(self,
                          action_id: str,
                          action_type: str,
                          parameters: Dict[str, Any],
                          decision_id: Optional[str] = None,
                          execution_time: Optional[float] = None) -> None:
        """Record an agent action"""
        
        event = AgentEvent(
            id=str(uuid.uuid4()),
            timestamp=datetime.now(),
            agent_id=self.agent_id,
            event_type=EventType.ACTION,
            data={
                'action_id': action_id,
                'action_type': action_type,
                'parameters': parameters,
                'decision_id': decision_id,
                'execution_time': execution_time,
                'parameter_count': len(parameters)
            },
            tags={'action_type': action_type}
        )
        
        await self._record_event(event)
        
        # Update action metrics
        if execution_time:
            await self._record_metric(f'action_execution_time_{action_type}', execution_time)
        
        await self._record_metric('actions_total', 1, MetricType.COUNTER)
    
    async def record_action_outcome(self,
                                  action_id: str,
                                  success: bool,
                                  outcome_data: Dict[str, Any],
                                  decision_id: Optional[str] = None) -> None:
        """Record the outcome of an action"""
        
        event = AgentEvent(
            id=str(uuid.uuid4()),
            timestamp=datetime.now(),
            agent_id=self.agent_id,
            event_type=EventType.ACTION,
            data={
                'action_id': action_id,
                'success': success,
                'outcome_data': outcome_data,
                'decision_id': decision_id
            },
            tags={'outcome': 'success' if success else 'failure'},
            severity=ObservabilityLevel.INFO if success else ObservabilityLevel.WARNING
        )
        
        await self._record_event(event)
        
        # Update outcome metrics
        outcome_metric = 'action_success_rate' if success else 'action_failure_rate'
        await self._record_metric(outcome_metric, 1, MetricType.COUNTER)
        
        # Correlate with decision if available
        if decision_id and decision_id in self.decision_contexts:
            await self._correlate_decision_outcome(decision_id, success, outcome_data)
    
    async def record_learning_event(self,
                                  learning_type: str,
                                  metrics: Dict[str, float],
                                  model_version: Optional[str] = None) -> None:
        """Record learning/training events"""
        
        event = AgentEvent(
            id=str(uuid.uuid4()),
            timestamp=datetime.now(),
            agent_id=self.agent_id,
            event_type=EventType.LEARNING,
            data={
                'learning_type': learning_type,
                'metrics': metrics,
                'model_version': model_version
            },
            tags={'learning_type': learning_type}
        )
        
        await self._record_event(event)
        
        # Update learning metrics
        await self.learning_metrics.update_metrics(learning_type, metrics)
        
        # Record individual learning metrics
        for metric_name, value in metrics.items():
            await self._record_metric(f'learning_{metric_name}', value)
    
    async def record_performance_metrics(self, 
                                       metrics: Dict[str, float],
                                       tags: Optional[Dict[str, str]] = None) -> None:
        """Record general performance metrics"""
        
        for metric_name, value in metrics.items():
            await self._record_metric(metric_name, value, tags=tags or {})
        
        # Update performance tracker
        await self.performance_tracker.update_performance_metrics(metrics)
    
    async def record_error(self,
                         error_type: str,
                         error_message: str,
                         context: Dict[str, Any],
                         stack_trace: Optional[str] = None) -> None:
        """Record error events"""
        
        event = AgentEvent(
            id=str(uuid.uuid4()),
            timestamp=datetime.now(),
            agent_id=self.agent_id,
            event_type=EventType.ERROR,
            data={
                'error_type': error_type,
                'error_message': error_message,
                'context': context,
                'stack_trace': stack_trace
            },
            tags={'error_type': error_type},
            severity=ObservabilityLevel.ERROR
        )
        
        await self._record_event(event)
        
        # Update error metrics
        await self._record_metric(f'errors_{error_type}', 1, MetricType.COUNTER)
    
    async def _record_event(self, event: AgentEvent) -> None:
        """Internal method to record and process events"""
        
        # Store event
        self.events.append(event)
        
        # Analyze for patterns
        patterns = await self.pattern_detector.analyze_event(event, list(self.events))
        
        # Check for anomalies
        anomaly_score = await self.anomaly_detector.analyze_event(event, list(self.events))
        
        if anomaly_score > self.config.get('anomaly_threshold', 0.8):
            await self._record_anomaly(event, anomaly_score, patterns)
    
    async def _record_metric(self, 
                           name: str,
                           value: float,
                           metric_type: MetricType = MetricType.GAUGE,
                           tags: Dict[str, str] = None) -> None:
        """Internal method to record metrics"""
        
        metric = PerformanceMetric(
            name=name,
            value=value,
            metric_type=metric_type,
            timestamp=datetime.now(),
            tags=tags or {}
        )
        
        self.metrics[name].append(metric)
    
    async def _correlate_decision_outcome(self,
                                        decision_id: str,
                                        success: bool,
                                        outcome_data: Dict[str, Any]) -> None:
        """Correlate decision with outcome for quality assessment"""
        
        if decision_id not in self.decision_contexts:
            return
        
        decision_context = self.decision_contexts[decision_id]
        
        # Calculate decision quality metrics
        confidence = decision_context['confidence']
        time_to_outcome = (datetime.now() - decision_context['timestamp']).total_seconds()
        
        # Store outcome
        self.decision_outcomes[decision_id] = {
            'success': success,
            'outcome_data': outcome_data,
            'time_to_outcome': time_to_outcome,
            'confidence_vs_outcome': confidence if success else (1 - confidence)
        }
        
        # Update decision quality metrics
        await self._record_metric('decision_outcome_correlation', 
                                confidence if success else (1 - confidence))
        await self._record_metric('decision_time_to_outcome', time_to_outcome)
    
    async def _record_anomaly(self,
                            event: AgentEvent,
                            anomaly_score: float,
                            patterns: List[BehaviorPattern]) -> None:
        """Record detected anomaly"""
        
        anomaly_event = AgentEvent(
            id=str(uuid.uuid4()),
            timestamp=datetime.now(),
            agent_id=self.agent_id,
            event_type=EventType.BEHAVIOR_ANOMALY,
            data={
                'triggering_event_id': event.id,
                'anomaly_score': anomaly_score,
                'related_patterns': [p.pattern_id for p in patterns],
                'event_type': event.event_type.value
            },
            severity=ObservabilityLevel.WARNING if anomaly_score < 0.9 else ObservabilityLevel.ERROR
        )
        
        self.events.append(anomaly_event)
        
        # Update anomaly metrics
        await self._record_metric('anomaly_score', anomaly_score)
        await self._record_metric('anomalies_detected', 1, MetricType.COUNTER)
    
    def get_recent_events(self, 
                         event_type: Optional[EventType] = None,
                         time_window: timedelta = timedelta(hours=1)) -> List[AgentEvent]:
        """Get recent events within time window"""
        
        cutoff_time = datetime.now() - time_window
        
        filtered_events = [
            event for event in self.events
            if event.timestamp >= cutoff_time
        ]
        
        if event_type:
            filtered_events = [
                event for event in filtered_events
                if event.event_type == event_type
            ]
        
        return filtered_events
    
    def get_metrics_summary(self, time_window: timedelta = timedelta(hours=1)) -> Dict[str, Any]:
        """Get summary of metrics within time window"""
        
        cutoff_time = datetime.now() - time_window
        summary = {}
        
        for metric_name, metric_list in self.metrics.items():
            recent_metrics = [
                m for m in metric_list
                if m.timestamp >= cutoff_time
            ]
            
            if recent_metrics:
                values = [m.value for m in recent_metrics]
                summary[metric_name] = {
                    'count': len(values),
                    'mean': np.mean(values),
                    'std': np.std(values),
                    'min': np.min(values),
                    'max': np.max(values),
                    'p50': np.percentile(values, 50),
                    'p95': np.percentile(values, 95),
                    'p99': np.percentile(values, 99)
                }
        
        return summary

class BehaviorPatternDetector:
    """Detect patterns in agent behavior"""
    
    def __init__(self, config: Dict[str, Any]):
        self.config = config
        self.detected_patterns: Dict[str, BehaviorPattern] = {}
        self.pattern_thresholds = config.get('pattern_thresholds', {})
        
    async def analyze_event(self, 
                          event: AgentEvent,
                          event_history: List[AgentEvent]) -> List[BehaviorPattern]:
        """Analyze event for behavioral patterns"""
        
        detected = []
        
        # Analyze decision patterns
        if event.event_type == EventType.DECISION:
            decision_patterns = await self._analyze_decision_patterns(event, event_history)
            detected.extend(decision_patterns)
        
        # Analyze action patterns
        if event.event_type == EventType.ACTION:
            action_patterns = await self._analyze_action_patterns(event, event_history)
            detected.extend(action_patterns)
        
        # Analyze temporal patterns
        temporal_patterns = await self._analyze_temporal_patterns(event, event_history)
        detected.extend(temporal_patterns)
        
        # Update pattern registry
        for pattern in detected:
            self._update_pattern_registry(pattern)
        
        return detected
    
    async def _analyze_decision_patterns(self,
                                       event: AgentEvent,
                                       event_history: List[AgentEvent]) -> List[BehaviorPattern]:
        """Analyze decision-making patterns"""
        
        patterns = []
        
        # Get recent decision events
        recent_decisions = [
            e for e in event_history[-100:]  # Last 100 events
            if e.event_type == EventType.DECISION
        ]
        
        if len(recent_decisions) < 5:
            return patterns
        
        # Pattern 1: Confidence trends
        confidences = [e.data.get('confidence', 0.5) for e in recent_decisions]
        if len(confidences) >= 5:
            confidence_trend = self._calculate_trend(confidences)
            
            if abs(confidence_trend) > 0.1:  # Significant trend
                pattern = BehaviorPattern(
                    pattern_id=f"confidence_trend_{event.agent_id}",
                    agent_id=event.agent_id,
                    pattern_type="confidence_trend",
                    frequency=len(confidences) / len(event_history[-1000:]),
                    confidence=min(0.9, abs(confidence_trend) * 2),
                    first_seen=recent_decisions[0].timestamp,
                    last_seen=event.timestamp,
                    examples=[{
                        'trend_direction': 'increasing' if confidence_trend > 0 else 'decreasing',
                        'trend_magnitude': confidence_trend,
                        'sample_confidences': confidences[-5:]
                    }]
                )
                patterns.append(pattern)
        
        # Pattern 2: Decision option preferences
        decision_types = defaultdict(int)
        for decision in recent_decisions:
            decision_type = decision.tags.get('decision_type', 'unknown')
            decision_types[decision_type] += 1
        
        # Check for strong preferences
        total_decisions = sum(decision_types.values())
        for decision_type, count in decision_types.items():
            preference_ratio = count / total_decisions
            
            if preference_ratio > 0.7:  # Strong preference
                pattern = BehaviorPattern(
                    pattern_id=f"decision_preference_{decision_type}_{event.agent_id}",
                    agent_id=event.agent_id,
                    pattern_type="decision_preference",
                    frequency=preference_ratio,
                    confidence=preference_ratio,
                    first_seen=recent_decisions[0].timestamp,
                    last_seen=event.timestamp,
                    examples=[{
                        'preferred_type': decision_type,
                        'preference_ratio': preference_ratio,
                        'count': count,
                        'total': total_decisions
                    }]
                )
                patterns.append(pattern)
        
        return patterns
    
    async def _analyze_action_patterns(self,
                                     event: AgentEvent,
                                     event_history: List[AgentEvent]) -> List[BehaviorPattern]:
        """Analyze action execution patterns"""
        
        patterns = []
        
        # Get recent action events
        recent_actions = [
            e for e in event_history[-100:]
            if e.event_type == EventType.ACTION
        ]
        
        if len(recent_actions) < 5:
            return patterns
        
        # Pattern 1: Action sequences
        action_sequences = self._extract_action_sequences(recent_actions, sequence_length=3)
        
        for sequence, count in action_sequences.items():
            if count >= 3:  # Sequence occurred at least 3 times
                frequency = count / (len(recent_actions) - 2)  # Adjust for sequence length
                
                if frequency > 0.3:  # Significant frequency
                    pattern = BehaviorPattern(
                        pattern_id=f"action_sequence_{hash(sequence)}_{event.agent_id}",
                        agent_id=event.agent_id,
                        pattern_type="action_sequence",
                        frequency=frequency,
                        confidence=min(0.9, frequency * 1.5),
                        first_seen=recent_actions[0].timestamp,
                        last_seen=event.timestamp,
                        examples=[{
                            'sequence': sequence,
                            'count': count,
                            'frequency': frequency
                        }]
                    )
                    patterns.append(pattern)
        
        # Pattern 2: Execution time patterns
        action_times = {}
        for action in recent_actions:
            action_type = action.data.get('action_type')
            exec_time = action.data.get('execution_time')
            
            if action_type and exec_time:
                if action_type not in action_times:
                    action_times[action_type] = []
                action_times[action_type].append(exec_time)
        
        for action_type, times in action_times.items():
            if len(times) >= 5:
                avg_time = np.mean(times)
                std_time = np.std(times)
                
                # Check for consistency (low variability)
                if std_time / avg_time < 0.2:  # Coefficient of variation < 0.2
                    pattern = BehaviorPattern(
                        pattern_id=f"execution_consistency_{action_type}_{event.agent_id}",
                        agent_id=event.agent_id,
                        pattern_type="execution_consistency",
                        frequency=len(times) / len(recent_actions),
                        confidence=1 - (std_time / avg_time),
                        first_seen=recent_actions[0].timestamp,
                        last_seen=event.timestamp,
                        examples=[{
                            'action_type': action_type,
                            'avg_time': avg_time,
                            'std_time': std_time,
                            'coefficient_of_variation': std_time / avg_time
                        }]
                    )
                    patterns.append(pattern)
        
        return patterns
    
    async def _analyze_temporal_patterns(self,
                                       event: AgentEvent,
                                       event_history: List[AgentEvent]) -> List[BehaviorPattern]:
        """Analyze temporal patterns in behavior"""
        
        patterns = []
        
        if len(event_history) < 10:
            return patterns
        
        # Pattern 1: Activity cycles (hourly patterns)
        hourly_activity = defaultdict(int)
        for e in event_history[-100:]:
            hour = e.timestamp.hour
            hourly_activity[hour] += 1
        
        if len(hourly_activity) > 1:
            activity_values = list(hourly_activity.values())
            max_activity = max(activity_values)
            avg_activity = np.mean(activity_values)
            
            # Check for clear activity peaks
            if max_activity > avg_activity * 2:  # Peak is more than 2x average
                peak_hours = [h for h, count in hourly_activity.items() if count == max_activity]
                
                pattern = BehaviorPattern(
                    pattern_id=f"activity_cycle_{event.agent_id}",
                    agent_id=event.agent_id,
                    pattern_type="activity_cycle",
                    frequency=max_activity / sum(activity_values),
                    confidence=min(0.9, (max_activity / avg_activity) / 5),
                    first_seen=event_history[-100].timestamp,
                    last_seen=event.timestamp,
                    examples=[{
                        'peak_hours': peak_hours,
                        'peak_activity': max_activity,
                        'average_activity': avg_activity,
                        'activity_distribution': dict(hourly_activity)
                    }]
                )
                patterns.append(pattern)
        
        return patterns
    
    def _calculate_trend(self, values: List[float]) -> float:
        """Calculate trend in a series of values"""
        
        if len(values) < 2:
            return 0.0
        
        # Simple linear regression slope
        n = len(values)
        x = list(range(n))
        
        x_mean = np.mean(x)
        y_mean = np.mean(values)
        
        numerator = sum((x[i] - x_mean) * (values[i] - y_mean) for i in range(n))
        denominator = sum((x[i] - x_mean) ** 2 for i in range(n))
        
        if denominator == 0:
            return 0.0
        
        return numerator / denominator
    
    def _extract_action_sequences(self, 
                                actions: List[AgentEvent],
                                sequence_length: int = 3) -> Dict[tuple, int]:
        """Extract action sequences from event list"""
        
        sequences = defaultdict(int)
        
        action_types = [a.data.get('action_type', 'unknown') for a in actions]
        
        for i in range(len(action_types) - sequence_length + 1):
            sequence = tuple(action_types[i:i + sequence_length])
            sequences[sequence] += 1
        
        return dict(sequences)
    
    def _update_pattern_registry(self, pattern: BehaviorPattern):
        """Update the pattern registry with new or updated pattern"""
        
        existing = self.detected_patterns.get(pattern.pattern_id)
        
        if existing:
            # Update existing pattern
            existing.frequency = (existing.frequency + pattern.frequency) / 2
            existing.confidence = max(existing.confidence, pattern.confidence)
            existing.last_seen = pattern.last_seen
            existing.examples.extend(pattern.examples)
            
            # Keep only recent examples
            existing.examples = existing.examples[-10:]
        else:
            # New pattern
            self.detected_patterns[pattern.pattern_id] = pattern

class AnomalyDetector:
    """Detect anomalies in agent behavior"""
    
    def __init__(self, config: Dict[str, Any]):
        self.config = config
        self.baseline_metrics: Dict[str, Dict[str, float]] = {}
        self.anomaly_threshold = config.get('threshold', 0.8)
        
    async def analyze_event(self, 
                          event: AgentEvent,
                          event_history: List[AgentEvent]) -> float:
        """Analyze event for anomalies, return anomaly score (0-1)"""
        
        anomaly_scores = []
        
        # Temporal anomaly detection
        temporal_score = await self._detect_temporal_anomalies(event, event_history)
        anomaly_scores.append(temporal_score)
        
        # Behavioral anomaly detection
        behavioral_score = await self._detect_behavioral_anomalies(event, event_history)
        anomaly_scores.append(behavioral_score)
        
        # Performance anomaly detection
        performance_score = await self._detect_performance_anomalies(event, event_history)
        anomaly_scores.append(performance_score)
        
        # Return maximum anomaly score
        return max(anomaly_scores) if anomaly_scores else 0.0
    
    async def _detect_temporal_anomalies(self,
                                       event: AgentEvent,
                                       event_history: List[AgentEvent]) -> float:
        """Detect temporal anomalies"""
        
        if len(event_history) < 10:
            return 0.0
        
        # Calculate typical time intervals between events
        recent_events = event_history[-20:]  # Last 20 events
        intervals = []
        
        for i in range(1, len(recent_events)):
            interval = (recent_events[i].timestamp - recent_events[i-1].timestamp).total_seconds()
            intervals.append(interval)
        
        if len(intervals) < 5:
            return 0.0
        
        # Calculate statistics
        mean_interval = np.mean(intervals)
        std_interval = np.std(intervals)
        
        if std_interval == 0:
            return 0.0
        
        # Current interval
        if len(event_history) > 0:
            current_interval = (event.timestamp - event_history[-1].timestamp).total_seconds()
            
            # Z-score based anomaly detection
            z_score = abs(current_interval - mean_interval) / std_interval
            
            # Convert z-score to anomaly score (0-1)
            anomaly_score = min(1.0, z_score / 3.0)  # 3-sigma rule
            
            return anomaly_score
        
        return 0.0
    
    async def _detect_behavioral_anomalies(self,
                                         event: AgentEvent,
                                         event_history: List[AgentEvent]) -> float:
        """Detect behavioral anomalies"""
        
        anomaly_score = 0.0
        
        # Decision confidence anomalies
        if event.event_type == EventType.DECISION:
            confidence = event.data.get('confidence', 0.5)
            
            # Get historical confidence values
            recent_decisions = [
                e for e in event_history[-50:]
                if e.event_type == EventType.DECISION
            ]
            
            if len(recent_decisions) >= 5:
                historical_confidences = [e.data.get('confidence', 0.5) for e in recent_decisions]
                
                mean_conf = np.mean(historical_confidences)
                std_conf = np.std(historical_confidences)
                
                if std_conf > 0:
                    z_score = abs(confidence - mean_conf) / std_conf
                    anomaly_score = max(anomaly_score, min(1.0, z_score / 2.0))
        
        # Action execution time anomalies
        if event.event_type == EventType.ACTION:
            execution_time = event.data.get('execution_time')
            action_type = event.data.get('action_type')
            
            if execution_time and action_type:
                # Get historical execution times for this action type
                historical_times = [
                    e.data.get('execution_time')
                    for e in event_history[-100:]
                    if (e.event_type == EventType.ACTION and 
                        e.data.get('action_type') == action_type and
                        e.data.get('execution_time') is not None)
                ]
                
                if len(historical_times) >= 5:
                    mean_time = np.mean(historical_times)
                    std_time = np.std(historical_times)
                    
                    if std_time > 0:
                        z_score = abs(execution_time - mean_time) / std_time
                        anomaly_score = max(anomaly_score, min(1.0, z_score / 3.0))
        
        return anomaly_score
    
    async def _detect_performance_anomalies(self,
                                          event: AgentEvent,
                                          event_history: List[AgentEvent]) -> float:
        """Detect performance-related anomalies"""
        
        anomaly_score = 0.0
        
        # Error rate anomalies
        recent_events = event_history[-50:]  # Last 50 events
        
        error_events = [e for e in recent_events if e.event_type == EventType.ERROR]
        error_rate = len(error_events) / len(recent_events) if recent_events else 0
        
        # Historical error rate
        if len(event_history) >= 100:
            historical_events = event_history[-200:-50]  # Events 51-200 back
            historical_errors = [e for e in historical_events if e.event_type == EventType.ERROR]
            historical_error_rate = len(historical_errors) / len(historical_events)
            
            # Check for significant increase in error rate
            if error_rate > historical_error_rate * 3:  # 3x increase
                anomaly_score = max(anomaly_score, min(1.0, error_rate / 0.1))  # Cap at 10% error rate
        
        return anomaly_score

class PerformanceTracker:
    """Track performance metrics and trends"""
    
    def __init__(self, config: Dict[str, Any]):
        self.config = config
        self.metrics_history: Dict[str, deque] = defaultdict(lambda: deque(maxlen=1000))
        
    async def update_decision_metrics(self,
                                    confidence: float,
                                    options_count: int,
                                    selected_option: Dict[str, Any]):
        """Update decision-related performance metrics"""
        
        self.metrics_history['decision_confidence'].append(confidence)
        self.metrics_history['decision_options_count'].append(options_count)
        
        # Calculate decision complexity score
        complexity = self._calculate_decision_complexity(selected_option, options_count)
        self.metrics_history['decision_complexity'].append(complexity)
        
    async def update_performance_metrics(self, metrics: Dict[str, float]):
        """Update general performance metrics"""
        
        for name, value in metrics.items():
            self.metrics_history[name].append(value)
    
    def _calculate_decision_complexity(self, 
                                     selected_option: Dict[str, Any],
                                     options_count: int) -> float:
        """Calculate complexity score for a decision"""
        
        # Base complexity from number of options
        base_complexity = min(1.0, options_count / 10.0)  # Normalize to 0-1
        
        # Add complexity from option parameters
        param_count = len(selected_option.get('parameters', {}))
        param_complexity = min(0.5, param_count / 20.0)  # Up to 0.5 additional
        
        return base_complexity + param_complexity
    
    def get_performance_trends(self, time_window: timedelta = timedelta(hours=1)) -> Dict[str, Dict[str, float]]:
        """Get performance trends over time window"""
        
        trends = {}
        
        for metric_name, values in self.metrics_history.items():
            if len(values) >= 10:  # Need minimum data points
                recent_values = list(values)[-50:]  # Last 50 values
                
                # Calculate trend
                trend = self._calculate_trend(recent_values)
                
                # Calculate statistics
                trends[metric_name] = {
                    'current': recent_values[-1],
                    'mean': np.mean(recent_values),
                    'std': np.std(recent_values),
                    'trend': trend,
                    'min': np.min(recent_values),
                    'max': np.max(recent_values),
                    'count': len(recent_values)
                }
        
        return trends
    
    def _calculate_trend(self, values: List[float]) -> float:
        """Calculate trend in values using linear regression"""
        
        if len(values) < 2:
            return 0.0
        
        n = len(values)
        x = np.array(range(n))
        y = np.array(values)
        
        # Simple linear regression
        x_mean = np.mean(x)
        y_mean = np.mean(y)
        
        numerator = np.sum((x - x_mean) * (y - y_mean))
        denominator = np.sum((x - x_mean) ** 2)
        
        if denominator == 0:
            return 0.0
        
        slope = numerator / denominator
        return slope

class LearningProgressTracker:
    """Track learning and adaptation progress"""
    
    def __init__(self):
        self.learning_history: Dict[str, List[Dict[str, Any]]] = defaultdict(list)
        
    async def update_metrics(self, learning_type: str, metrics: Dict[str, float]):
        """Update learning metrics"""
        
        entry = {
            'timestamp': datetime.now(),
            'metrics': metrics
        }
        
        self.learning_history[learning_type].append(entry)
        
        # Keep only recent history
        if len(self.learning_history[learning_type]) > 1000:
            self.learning_history[learning_type] = self.learning_history[learning_type][-1000:]
    
    def get_learning_progress(self, learning_type: str) -> Dict[str, Any]:
        """Get learning progress for a specific learning type"""
        
        history = self.learning_history.get(learning_type, [])
        
        if not history:
            return {'error': 'No learning history available'}
        
        # Analyze progress over time
        progress = {}
        
        # Get all metric names
        all_metrics = set()
        for entry in history:
            all_metrics.update(entry['metrics'].keys())
        
        # Calculate progress for each metric
        for metric_name in all_metrics:
            values = []
            timestamps = []
            
            for entry in history:
                if metric_name in entry['metrics']:
                    values.append(entry['metrics'][metric_name])
                    timestamps.append(entry['timestamp'])
            
            if len(values) >= 2:
                # Calculate improvement
                first_value = values[0]
                last_value = values[-1]
                improvement = last_value - first_value
                improvement_pct = (improvement / abs(first_value)) * 100 if first_value != 0 else 0
                
                # Calculate trend
                trend = self._calculate_learning_trend(values)
                
                progress[metric_name] = {
                    'first_value': first_value,
                    'last_value': last_value,
                    'improvement': improvement,
                    'improvement_percentage': improvement_pct,
                    'trend': trend,
                    'data_points': len(values)
                }
        
        return {
            'learning_type': learning_type,
            'total_updates': len(history),
            'time_span': (history[-1]['timestamp'] - history[0]['timestamp']).total_seconds() if len(history) > 1 else 0,
            'metrics': progress
        }
    
    def _calculate_learning_trend(self, values: List[float]) -> str:
        """Calculate learning trend (improving, declining, stable)"""
        
        if len(values) < 3:
            return 'insufficient_data'
        
        # Calculate moving averages
        window_size = min(5, len(values) // 2)
        
        early_avg = np.mean(values[:window_size])
        late_avg = np.mean(values[-window_size:])
        
        diff = late_avg - early_avg
        threshold = np.std(values) * 0.5  # 0.5 standard deviations
        
        if diff > threshold:
            return 'improving'
        elif diff < -threshold:
            return 'declining'
        else:
            return 'stable'

class AIAgentDashboard:
    """Dashboard for visualizing AI agent observability data"""
    
    def __init__(self, collector: AIAgentObservabilityCollector):
        self.collector = collector
        
    def generate_health_report(self) -> Dict[str, Any]:
        """Generate comprehensive health report"""
        
        recent_events = self.collector.get_recent_events(time_window=timedelta(hours=1))
        metrics_summary = self.collector.get_metrics_summary(time_window=timedelta(hours=1))
        patterns = list(self.collector.pattern_detector.detected_patterns.values())
        performance_trends = self.collector.performance_tracker.get_performance_trends()
        
        # Calculate health score
        health_score = self._calculate_health_score(recent_events, metrics_summary)
        
        return {
            'agent_id': self.collector.agent_id,
            'timestamp': datetime.now().isoformat(),
            'health_score': health_score,
            'summary': {
                'total_events': len(recent_events),
                'event_breakdown': self._get_event_breakdown(recent_events),
                'error_rate': self._calculate_error_rate(recent_events),
                'decision_count': len([e for e in recent_events if e.event_type == EventType.DECISION]),
                'action_count': len([e for e in recent_events if e.event_type == EventType.ACTION]),
            },
            'performance': {
                'metrics_summary': metrics_summary,
                'trends': performance_trends
            },
            'patterns': {
                'total_patterns': len(patterns),
                'active_patterns': [p for p in patterns if (datetime.now() - p.last_seen).total_seconds() < 3600],
                'anomaly_patterns': [p for p in patterns if p.anomaly_score > 0.7]
            },
            'alerts': self._generate_alerts(recent_events, patterns, health_score)
        }
    
    def _calculate_health_score(self, 
                              events: List[AgentEvent],
                              metrics: Dict[str, Any]) -> float:
        """Calculate overall health score (0-1)"""
        
        if not events:
            return 0.5  # Neutral score if no data
        
        health_factors = []
        
        # Error rate factor
        error_rate = self._calculate_error_rate(events)
        error_factor = max(0, 1 - error_rate * 10)  # Penalize high error rates
        health_factors.append(error_factor)
        
        # Activity factor
        activity_factor = min(1.0, len(events) / 100)  # Normalize to expected activity
        health_factors.append(activity_factor)
        
        # Decision confidence factor
        decision_events = [e for e in events if e.event_type == EventType.DECISION]
        if decision_events:
            avg_confidence = np.mean([e.data.get('confidence', 0.5) for e in decision_events])
            confidence_factor = avg_confidence
            health_factors.append(confidence_factor)
        
        # Anomaly factor
        anomaly_events = [e for e in events if e.event_type == EventType.BEHAVIOR_ANOMALY]
        anomaly_rate = len(anomaly_events) / len(events)
        anomaly_factor = max(0, 1 - anomaly_rate * 5)  # Penalize high anomaly rates
        health_factors.append(anomaly_factor)
        
        return np.mean(health_factors)
    
    def _get_event_breakdown(self, events: List[AgentEvent]) -> Dict[str, int]:
        """Get breakdown of events by type"""
        
        breakdown = defaultdict(int)
        for event in events:
            breakdown[event.event_type.value] += 1
        
        return dict(breakdown)
    
    def _calculate_error_rate(self, events: List[AgentEvent]) -> float:
        """Calculate error rate from events"""
        
        if not events:
            return 0.0
        
        error_count = len([e for e in events if e.event_type == EventType.ERROR])
        return error_count / len(events)
    
    def _generate_alerts(self, 
                        events: List[AgentEvent],
                        patterns: List[BehaviorPattern],
                        health_score: float) -> List[Dict[str, Any]]:
        """Generate alerts based on current state"""
        
        alerts = []
        
        # Health score alerts
        if health_score < 0.3:
            alerts.append({
                'type': 'health',
                'severity': 'critical',
                'message': f'Agent health score critically low: {health_score:.2f}',
                'timestamp': datetime.now().isoformat()
            })
        elif health_score < 0.6:
            alerts.append({
                'type': 'health',
                'severity': 'warning',
                'message': f'Agent health score below normal: {health_score:.2f}',
                'timestamp': datetime.now().isoformat()
            })
        
        # Error rate alerts
        error_rate = self._calculate_error_rate(events)
        if error_rate > 0.1:  # More than 10% errors
            alerts.append({
                'type': 'error_rate',
                'severity': 'warning' if error_rate < 0.2 else 'critical',
                'message': f'High error rate detected: {error_rate:.1%}',
                'timestamp': datetime.now().isoformat()
            })
        
        # Anomaly alerts
        anomaly_events = [e for e in events if e.event_type == EventType.BEHAVIOR_ANOMALY]
        if anomaly_events:
            recent_anomalies = [e for e in anomaly_events if (datetime.now() - e.timestamp).total_seconds() < 300]
            if len(recent_anomalies) > 3:
                alerts.append({
                    'type': 'anomaly',
                    'severity': 'warning',
                    'message': f'Multiple anomalies detected in last 5 minutes: {len(recent_anomalies)}',
                    'timestamp': datetime.now().isoformat()
                })
        
        # Pattern alerts
        high_anomaly_patterns = [p for p in patterns if p.anomaly_score > 0.8]
        if high_anomaly_patterns:
            alerts.append({
                'type': 'pattern',
                'severity': 'warning',
                'message': f'Detected {len(high_anomaly_patterns)} high-anomaly behavioral patterns',
                'timestamp': datetime.now().isoformat()
            })
        
        return alerts

Production Deployment Example

Here’s how to integrate the observability system into a production AI agent:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
class ObservableAIAgent:
    """AI Agent with integrated observability"""
    
    def __init__(self, config: Dict[str, Any]):
        self.config = config
        self.agent_id = config['agent_id']
        
        # Initialize observability
        self.observability = AIAgentObservabilityCollector(config['observability'])
        self.dashboard = AIAgentDashboard(self.observability)
        
        # Background tasks for monitoring
        self.monitoring_tasks = []
        
    async def start(self):
        """Start agent with monitoring"""
        
        # Start monitoring tasks
        self.monitoring_tasks = [
            asyncio.create_task(self._periodic_health_check()),
            asyncio.create_task(self._periodic_metrics_collection()),
        ]
        
        await self.observability.record_event(
            AgentEvent(
                id=str(uuid.uuid4()),
                timestamp=datetime.now(),
                agent_id=self.agent_id,
                event_type=EventType.INFO,
                data={'message': 'Agent started'},
                severity=ObservabilityLevel.INFO
            )
        )
    
    async def make_decision(self, context: Dict[str, Any]) -> Dict[str, Any]:
        """Make a decision with full observability tracking"""
        
        decision_id = str(uuid.uuid4())
        start_time = time.time()
        
        try:
            # Simulate decision-making process
            options = self._generate_options(context)
            selected_option = self._select_option(options, context)
            confidence = self._calculate_confidence(selected_option, options, context)
            reasoning = self._generate_reasoning(selected_option, context)
            
            # Record decision
            await self.observability.record_decision(
                decision_id=decision_id,
                context=context,
                options=options,
                selected_option=selected_option,
                confidence=confidence,
                reasoning=reasoning
            )
            
            decision_time = time.time() - start_time
            await self.observability.record_performance_metrics({
                'decision_time': decision_time,
                'context_size': len(str(context)),
                'options_evaluated': len(options)
            })
            
            return {
                'decision_id': decision_id,
                'selected_option': selected_option,
                'confidence': confidence,
                'reasoning': reasoning
            }
            
        except Exception as e:
            await self.observability.record_error(
                error_type=type(e).__name__,
                error_message=str(e),
                context={'decision_context': context}
            )
            raise
    
    async def execute_action(self, action: Dict[str, Any], decision_id: str = None) -> Dict[str, Any]:
        """Execute action with observability tracking"""
        
        action_id = str(uuid.uuid4())
        start_time = time.time()
        
        try:
            # Record action start
            await self.observability.record_action(
                action_id=action_id,
                action_type=action['type'],
                parameters=action.get('parameters', {}),
                decision_id=decision_id
            )
            
            # Simulate action execution
            result = await self._execute_action_impl(action)
            
            execution_time = time.time() - start_time
            success = result.get('success', True)
            
            # Record action completion
            await self.observability.record_action_outcome(
                action_id=action_id,
                success=success,
                outcome_data=result,
                decision_id=decision_id
            )
            
            return result
            
        except Exception as e:
            execution_time = time.time() - start_time
            
            await self.observability.record_action_outcome(
                action_id=action_id,
                success=False,
                outcome_data={'error': str(e)},
                decision_id=decision_id
            )
            
            await self.observability.record_error(
                error_type=type(e).__name__,
                error_message=str(e),
                context={'action': action, 'decision_id': decision_id}
            )
            raise
    
    async def _periodic_health_check(self):
        """Periodic health monitoring"""
        
        while True:
            try:
                health_report = self.dashboard.generate_health_report()
                
                # Log health status
                if health_report['health_score'] < 0.5:
                    await self.observability.record_error(
                        error_type='health_degradation',
                        error_message=f"Health score: {health_report['health_score']:.2f}",
                        context=health_report
                    )
                
                # Export health metrics
                await self._export_health_metrics(health_report)
                
            except Exception as e:
                logging.error(f"Health check failed: {e}")
            
            await asyncio.sleep(60)  # Check every minute
    
    async def _periodic_metrics_collection(self):
        """Periodic metrics collection and export"""
        
        while True:
            try:
                # Collect system metrics
                system_metrics = self._collect_system_metrics()
                
                await self.observability.record_performance_metrics(
                    system_metrics,
                    tags={'source': 'system_monitoring'}
                )
                
            except Exception as e:
                logging.error(f"Metrics collection failed: {e}")
            
            await asyncio.sleep(30)  # Collect every 30 seconds
    
    def _collect_system_metrics(self) -> Dict[str, float]:
        """Collect system-level metrics"""
        
        import psutil
        
        return {
            'cpu_percent': psutil.cpu_percent(),
            'memory_percent': psutil.virtual_memory().percent,
            'disk_usage_percent': psutil.disk_usage('/').percent,
            'network_io_bytes_sent': psutil.net_io_counters().bytes_sent,
            'network_io_bytes_recv': psutil.net_io_counters().bytes_recv
        }

Conclusion

Observability for intelligent systems requires a comprehensive approach that goes beyond traditional monitoring to include behavioral analysis, decision tracking, and anomaly detection. Key components include:

  1. Multi-dimensional Metrics: Track traditional performance metrics alongside AI-specific metrics like decision quality and learning progress
  2. Behavioral Pattern Detection: Identify patterns in agent behavior to understand normal operation and detect deviations
  3. Anomaly Detection: Use statistical methods to identify unusual behaviors that may indicate problems
  4. Decision Traceability: Maintain complete records of decision-making processes for debugging and improvement
  5. Real-time Alerting: Generate actionable alerts based on agent health and behavior

The observability framework presented here provides the foundation for building transparent, monitorable AI systems that can be operated with confidence in production environments. As AI systems become more autonomous and complex, robust observability becomes essential for maintaining trust, debugging issues, and ensuring reliable operation.

Organizations that invest in comprehensive AI observability will be better positioned to deploy and scale intelligent systems while maintaining the visibility and control needed for enterprise operations.